Département de mathématiques et de statistique

Faculté des sciences

Département de mathématiques et de statistique

Campus de Moncton

Département de mathématiques et de statistique

Faculté des sciences

Département de mathématiques et de statistique

Campus de Moncton

Imprimer cette page
Calendrier
Nouvelles
Bottin
Imprimer cette page
Calendrier
Nouvelles
Bottin

Publications

Publications

Dhaker H., El Adlouni S.-E (2024). Interval estimation of the overlapping coefficients in an exponential family of distributions based on upper record values. Journal of Statistical Computation and Simulation, 1-16.

Fortin A., Briffard T., Plasman L. and Léger S. (2024). An anisotropic mesh adaptation method based on gradient recovery and optimal shape elements. dans F. Chouly, S. Bordas, R. Becker et P. Omnes éditeurs, Error control, adaptive discretizations, and applications, Part 1, volume 58 de Advances in Applied Mechanics.

Hannoun El, Zoglat W. A., Ezzahid A. E. and El Adlouni S.-E (2024). D-vine Copula Quantile Regression for a Multidimensional Water Expenditures Analysis: Social and Regional Impacts. Water Resources Management, 1-17.

Baldé I., Yang Y.A Lefebvre G. (2023). Reader reaction to « Outcome-adaptive lasso Variable selection for causal inference » by Shortreed and Ertefaie (2017). Biometrics, 79, 514-520. https://onlinelibrary.wiley.com/doi/10.1111/biom.13683

Ibrahima Dione and Van Son Lai (2023). Bond Duration and Convexity under Stochastic Interest Rates and Credit Spreads. The Journal of Fixed Income, Volume 33, Issue 3. . https://www.pm-research.com/content/iijfixinc/early/2023/10/14/jfi20231173

S. Léger, P. Larocque et D. LeBlanc (2023). Improved Moore-Penrose continuation algorithm for the computation of problems with critical points. Computers and structures, 281, 107009.

Pepin A., S. Léger et N. Beaudoin (2022). High-degree splines from discrete Fourier transforms: robust methods to obtain the boundary conditions. Applied Numerical Mathematics, 181, 594-617.

Slimani, S.; Farhloul, M.; Medarhri, I.; Najib, K. et Zine, A. (2022). Mixed formulation of a stationary seawater intrusion problem in confined aquifers. Numer. Algorithms 91, no. 2, 651–669.

Dione I. (2020). Optimal error estimates of the unilateral contact problem in a curved and smooth boundary domain by the penalty method. IMA Journal of Numerical Analysis, 00, pp. 1-35.

Farhloul, M. (2020). Mixed finite element methods for the Oseen problem. Numer. Algorithms 84, no. 4, 1431–1442.

Pepin A., S. Beauchemin, S. Léger et N. Beaudoin (2020). A new method for high-degree spline interpolation: proof of continuity for piecewise polynomials. Canadian Mathematical Bulletin, 63(3), 655-669.

Dione I. (2019). Optimal convergence analysis of the unilateral contact problem with and without Tresca friction conditions by the penalty method. Journal of Mathematical Analysis and Applications, 472, pp. 266-284.

Dione, I., Doyon, N. et Deteix, J. (2019) Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model. J. Math. Biol. 78, 21–56. https://doi.org/10.1007/s00285-018-1266-2

El Adlouni, S. et I. Baldé (2019). Bayesian non-crossing Quantile regression for regularly varying distributions. Journal of statistical computation and Simulation, 89 (5), 884-898.

El Adlouni, S. (2018). Quantile regression C-vine copula model for spatial extremes. Natural Hazards, 94 (1), 299-317.

El Adlouni S., G. Salaou et A. St-Hilaire (2018). Regularized Bayesian quantile regression. Communications in Statistics – Simulation and Computation. 47 (1); 277-293.

Farhloul, M. et A. Zine (2017). A posteriori error estimation for a dual mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or Carreau law. Int. J. Appl. Math. 30 , no. 5, 351–373.

Farhloul, M. et A. Zine (2017). A dual-mixed finite element method for quasi-Newtonian flows whose viscosity obeys a power law or the Carreau law. Math. Comput. Simulation 141 ,83–95.

Léger S., J. Haché et S. Traore (2017). Improved algorithm for the detection of bifurcation points in nonlinear finite element problems. Computers and structures, 191, 1-11.

Léger S. et A. Pepin (2016). An updated Lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems: the three-dimensional case. Computer Methods in Applied Mechanics and Engineering 2016, 309, 1-18.

Dione I. et J. M. Urquiza (2015). Penalty: finite element approximation of Stokes equations with slip boundary conditions. Numerische Mathematik, 129, pages 587–610.

Farhloul, M.; Mounim, A. Serghini et M. Zine (2015). A. On a stabilized finite element method with mesh adaptive procedure for convection-diffusion problems. Int. J. Appl. Math. 28 , no. 6, 667–689.

Léger S., J. Deteix et A. Fortin (2015). A Moore-Penrose continuation method based on a Schur complement approach for nonlinear finite element bifurcation problems. Computers and structures, 152, 173-184.

Léger S., A. Fortin, C. Tibirna et M. Fortin (2014). An updated Lagrangian method with error estimation and adaptive remeshing for very large deformation elasticity problems. International Journal for Numerical Methods in Engineering, 100(13), 1006-1030.