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INTRODUCTION 

 

The symposium series MACAS (Mathematics and its Connections to the Arts and Sciences) was 

founded in 2005 by an international group of researchers and held for the first time at the University 

of Education Schwäbsich Gmünd, Germany. Subsequent MACAS meetings were held in Odense, 

Denmark (2007), Moncton, Canada (2009), Schwäbisch Gmünd, Germany (2015), Copenhagen, 

Denmark (2017) and Montréal, Canada (2019). In 2022, we broke the tradition of in-person meetings, 

and organized a fully online symposium, virtually situated at Université de Moncton, Canada.  

The vision behind the MACAS initiative is to achieve a humanistic mode of education, that is, to 

combine various disciplines into a single curriculum, an approach that was suggested by Renaissance 

philosophers. According to this philosophical view, the goal is to allow students to pursue various 

fields of study while being introduced to a more holistic perspective, such as connections between 

mathematics, the arts, and sciences. Given the challenges of the 21st century, interdisciplinary, 

transdisciplinary, and multidisciplinary education are of increasing importance. In this context, 

mathematics plays a key role because it is linked to all other disciplines and can serve as a bridge 

between them.  

To achieve their goals, MACAS symposia bring together educators and researchers from diverse 

fields of study (mathematics, sciences, arts, humanities, philosophy, education, and other disciplines 

that are intrinsically connected to mathematics), as well as those who are well-established at the 

forefront of international research and practice, and emerging scholars. The symposia provide a 

breeding ground for scientific exchange, new partnerships and reflection on commonalities and 

differences between different contexts, viewpoints, and approaches. 

The previous MACAS symposia have shown that there is more than one way to approach these 

connections in research and in practice. Therefore, this time, we proposed to take a closer look at 

future challenges and the role of trans-, cross-, and interdisciplinary mathematics education in the 

Anthropocene era. We invited a wide range of contributions, for example, around the following 

themes: 

⎯ Theoretical study of the relationship between mathematics, arts, and sciences 

⎯ Instructional approaches to integrating mathematics, arts, and sciences 

⎯ Importance of mathematical modeling and interdisciplinarity for learning mathematics 

⎯ Connections between arts and humanities with mathematics in everyday life situations 

⎯ Historical and intercultural dimensions of mathematics learning 

⎯ Critical analysis of STEM education from a holistic perspective 

⎯ Mathematical creativity from an interdisciplinary perspective 

 

The call attracted international participants from around the world including England, Sweden, 

Denmark, Israel, Russia, Iran, Taiwan, Mexico, Chile, and Canada. Despite their geographic distance, 

all participants shared an interest in the intersection between mathematics, sciences, and the arts. For 

these Proceedings, we invited all presenters to submit their full papers. Those submitted were grouped 

into five broader themes. 

 

Keynotes  

In her keynote: Inspired by Mi’kmaw Knowledge: Creating Space for Mathematics to Emerge, Lisa 

Lunney-Borden shares her decolonizing work that she has been developing alongside Mi’kmaw 

communities. In this work, she creates space for mathematical ideas to emerge in the context, thus 
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creating greater cultural consistency, rather than cultural collisions. Lisa’s work examines stories of 

mathematics learning that have been influenced by Mi’kmaw knowledge learned from Elders and 

knowledge keepers in Mi’kma’ki or what we now call Nova Scotia. Through exploration of concrete 

examples, she shares ideas of how mathematics can live alongside community knowledge systems in 

ways that support rather than take away from cultural identity, language, and culture. 

The next keynote by Mario Sánchez Aguilar titled: Social Media, School Mathematics, and 

Epistemology, explores the impact of the Internet and social media on the ways young people interact 

with and approach school mathematics. This paper highlights how the internet has transformed how 

students validate mathematical knowledge and seek out mathematical help and support from a range 

of sources, including online forums and educational websites. The article also explores how social 

media has provided a platform for students to express their emotions and perceptions about school 

mathematics in new and innovative ways. The findings challenge traditional notions of being a 

mathematics student and how mathematical knowledge is acquired and validated.  

Two other keynotes were also presented at the Symposium: Camillia Matuk keynote titled: 

Supporting Youth’s Socially Engaged Inquiry Through the Arts and Margarida Romero keynote 

titled: Let’s Steam! Creative Problem Solving in interdisciplinary Projects. Please refer to the 

program for more details: Keynote Speakers. 

The section CONTEXTS AND PERSPECTIVES: COMPETENCIES, IDENTITY, AND 

INTERDISCIPLINARITY features four papers.  

Oliver Kauffmann and Uffe Thomas Jankvist invite the readers to reflect about the body in 

discussions of mathematical competencies based on a KOM framework on mathematical 

competencies. In their turn, Morten Misfeldt, Uffe Thomas Jankvist, Raimundo Elicer, Andreas 

Lindenskov Tamborg, Thomas Brahe, Eirini Geraniou and Kajsa Bråting explore what the 

interplay between mathematics and computational thinking in K-9 schools in Denmark, Sweden and 

England looks like through the lens of interdisciplinarity. 

By introducing the Lifestyles Project consisted in three consecutive assignments (Hobbies, Careers, 

and Bedroom Design Drawing), Midhat Noor Kiyani, Limin Jao, Cinzia Di Placido and Sun Jung 

Choi examine the ways to develop interdisciplinary mathematics education initiatives thus 

transforming mathematics instruction to make it engaging, meaningful, and relevant for the students. 

In its turn, based on a framework of figured worlds, a case from Rebecca Pearce’s study discusses 

exploratory findings from interviews with a secondary school student who was born extremely 

preterm, his parents and teacher to highlight a complexity of negotiating mathematical identities.  

The section INNOVATIVE APPROACHES TO MATHEMATICS LEARNING: MODELLING, 

EXPERIMENTS, DESIGN THINKING contains six papers.  

It opens with Amenda Chow’s paper addresses the lack of experiments in the teaching and learning 

of mathematics, especially at the undergraduate level by suggesting further insights, helpful 

suggestions, and examples on incorporating experiments into a university-level mathematics 

curriculum. At the other end of K-20 education, a case study on rapturousness in makerspaces 

presented by Olga Fellus and Viktor Freiman features an engineering challenge that kindergarten 

students from one elementary (K-5) school were trying to solve when designing a shelter for their 

stuffed animals. Very young children were showing an amazingly complex mathematical thinking 

https://www.umoncton.ca/umcs-macas2022/en/node/4
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while taking a path of development of creativity, perseverance, and more generally, of becoming a 

well-rounded, inspired, and interest-driven person.  

A virtual lesson study cycle with high school teachers analyzed by Gloriana González and 

Saadeddine Shehab shows a potential of the Human-Centered Design (HCD) approach to engage 

teachers in identifying authentic contexts for students to experience geometry problem-solving. In 

their turn, Olivia Lu, Sreedevi Rajasekharan, and Steven Khan revisit and resituate kolam drawing 

in mathematics education through a perspective of being for multispecies’ flourishing. The authors 

seek to create opportunities for passionate immersion and meaningful engagement with other cultures 

in ways that privilege a mindset of partnership and kinship.  

A paper by Josh Markle and Jo Towers describes and interprets students’ embodied experiences of 

spatial reasoning in a grade 12 mathematics classroom using a novel methodology the authors call 

Bodymarking to create graphic profiles of everyday classroom actions, such as gaze and gesture. In 

his turn, Bienvenu Rajaonson demonstrates the potential of the algorithms created for their 

application in the learning and improvement of volleyball players’ skills. The examples of 

mathematical modeling discussed in this article present yet another way of raising awareness and 

advancing research on sports and their integration into society. 

The section STEM AND TEACHER EDUCATION includes four papers.  

Amel Kaouche shares examples of her teaching a modeling course to third-year university students 

to show the important role of mathematics in solving problems in daily life. In their paper, Dragana 

Martinovic and Mariana Milner-Bolotin propose a novel curricular approach of the Educational 

Framework for Modelling (EF4M) for integrating mathematics and sciences and highlight the 

importance of mathematical modelling and interdisciplinarity for teaching and learning STEM. 

Heather McPherson describes how novice teachers assume the role of expert in a dynamic 

intermingling of roles that can generate pedagogical innovation. Judith Zamir, Heftsi Zohar and 

Mark Applebaum walk us through the first trial for scaling up the Kanga-Kids Training for Math 

Teachers in early grades. Through the use of a case study, they showcase what works best and what 

needs to be improved in the scaling up process.  

A collection of six texts explores connections between MATHEMATICS, ARTS, AND 

LANGUAGE.  

Sergei Abramovich and Viktor Freiman consider mathematics as “creative art” and doing 

mathematics as “collateral creativity,” where visual representation and manipulatives help students 

to create unexpected and thus exciting solutions. In those cases, the teacher has to react appropriately 

with encouragement and openness for different approaches. 

Richard Barwell and Yasmine Abtahi study poetry as a critical thinking tool for mathematics and 

education. Using the example of modeling and the relational nature of mathematical knowledge and 

a poem by Ted Hughes and Rumi, the authors seek to demonstrate that the interpretation of particular 

events through poetry and mathematics reveals mathematical knowledge limitations. 

Viktor Freiman and Alexei Volkov give us a history lesson on how Leonardo da Vinci and his 

predecessors calculated the area of a circle. The authors’ intent was to introduce us to the historical 

roots of modern didactical methods. 
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More beautiful images are provided by Mohammad Hossein Eslampanah and Payam Seraji. 

These were inspired by Persian tiling patterns, thus providing both the cultural and historical 

perspective on relations between arts and mathematics. 

Revolt Pimenov takes us into the realm of circle symmetry and uses technology to create beautiful 

visual representations of geometric problems that extend beyond the boundaries of Euclidian 

geometry. He provides examples of students’ work and inspires us to look for biological forms in 

mathematical visualizations. 

In connection with dance, Jorge Soto-Andrade, Ami Shulman and May Garcés-Ocares explore 

the mathematical processes involved in stochastic dance, a dance created by randomness which 

generates shapes, forms, movements, and choreography. The authors reveal a reconstruction of a 

group of dancers’ relationship to mathematics triggered by their lived experience of stochastic dance 

workshop. 

There are six texts in the section MATHEMATICS AND SCIENCE AND TECHNOLOGY AND 

COMPUTATIONAL THINKING. 

Takam Djambong presents results of a qualitative study with grade 7 and 8 students who participated 

in tasks addressing Archimedes’ Principle, buoyancy, and density using a virtual manipulative 

environment. Conceptually, the author presents the interdisciplinarity of the tasks through their 

learning, epistemological, and cognitive components. 

Placed in a Danish environment, Raimundo Elicer and Andreas Lindenskov Tamborg’s study 

sought to characterize problem handling in the programming and computational thinking-driven 

mathematics education. Their analysis highlighted three aspects of mathematical problem handling 

competency in connection to computational thinking, the findings of interest to educators who intend 

to integrate the two approaches. 

Jacques Kamba and Viktor Freiman looked into the role of mathematics when elementary school 

students for the first time used computer coding to program a moving part of a toy. The researchers 

were particularly interested in understanding the students’ engagemenent in debugging during this 

engineering design project.  

Manon LeBlanc, Nicole Lirette-Pitre and Micaël Richard address the deficiency of pre-service 

education as a barrier to providing STEM education in schools. They present results of a two-year 

long teaching experiment conducted by two teacher educators, who co-taught future teachers by 

integrating science and mathematics content. 

Dominic Manuel and Marc de Montigny studied the effects of two novel approaches to teaching 

physics to undergraduate students, some of whom were future secondary school teachers. Inquiry-

based learning is widely considered adequate for teaching science, while flipped classroom was 

appropriate for blended learning used during the pandemic. 

Yimei Zhang, Tanya Chichekian and Annie Savard demonstrate how to use four aspects of 

computational thinking, namely decomposition, abstraction, debugging, and generalization, to 

empower elementary school students’ mathematical problem-solving skills. The authors drew 

inspiration from problems they found in an ancient Chinese mathematics book “Sun Zi’s 

Mathematical Manual.”  
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Conclusions and Thanks 

With the steadily growing awareness to the necessity and timeliness to surface and showcase the 

relationship between and among the teaching and learning of mathematics and that of the arts and 

sciences, we also recognize that education is a science of uncertainty and an art of possibility. In a 

world that is increasingly typified by volatility, complexity, and ambiguity, the richness of 

mathematics provides a calming space for exercising hope and developing agency. Mathematics also 

opens possibilities for understanding multifaceted phenomena through artistic and scientific 

methodologies. Considering the rich perspectives taken up in the MACAS conference, we also 

recognize the spaces that are left empty by the duality between mathematics and other school subjects 

that create a misrepresentation of mathematical content knowledge as siloed, disjointed, and 

compartmentalized. Such misrepresentations are still prevalent in the public discourse.  

We are thankful to all involved in the organization of MACAS 2022, to the Université de Moncton 

Campus de Shippagan and to our presenters. We want to extend our deepest appreciation for the 

invaluable assistance of the International Programme Committee: Astrid Beckmann, Viktor Freiman, 

Uffe Thomas Jankvist, Dragana Martinovic, Claus Michelsen (president) and Annie Savard, the Local 

Committee: Pierre-Paul Cyr, Lisa Savoie-Ferron, Viktor Freiman, Caitlin Furlong, Patrick Kenny, 

Manon LeBlanc, Toni Maresu, Hans Peter Nutzinger, Alexandre Pepin, and Xavier Robichaud 

(president), and Irena Lander for her editing work. Their expertise and dedication in meticulously 

reviewing and refining the materials have been instrumental in ensuring the quality and accuracy of 

the symposium and the proceedings. 

We are looking forward to meeting again in a location for this time in-person symposium. 

 

Editors          February 2024 
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Inspired by Mi’kmaw knowledge: Creating space for mathematics to 

emerge 

Lisa Lunney Borden1 

 

In 2006, Edward Doolittle suggested that rather than imposing mathematics on cultural practices 

and artifacts, it might make sense to begin in community and pull in mathematics as a need arises. 

This approach is something that has been a key idea in the decolonizing work I have done alongside 

Mi’kmaw communities. When we begin with interesting contexts or problems that honour and respect 

Mi’kmaw knowledge systems, we create space for mathematical ideas to emerge in the context, thus 

creating greater cultural consistency, rather than cultural collisions. This paper examines stories of 

mathematics learning that have been influenced by Mi’kmaw knowledge learned from Elders and 

knowledge keepers in Mi’kma’ki or what we now call Nova Scotia. Through exploration of these 

examples, I will share ideas of how mathematics can live alongside community knowledge systems in 

ways that support rather than take away from cultural identity, language, and culture. 

Keywords: Indigenous mathematics, Mi’kmaw knowledge, decolonizing mathematics, equity.  

 

Introduction 

This paper highlights some stories that were told as part of a keynote presented at MACAS 2022. In 

keeping with the inter-disciplinary spirit of MACAS, I have chosen to draw examples from two 

programs I have been involved with in Mi’kmaw communities: Show Me your Math and Connecting 

Math to Our Lives and Communities. These two initiatives have grown out of a long-standing 

relationship I have with Mi’kmaw communities as an educator, researcher, and learner. I begin first 

by positioning myself in the work to demonstrate how it is that I have come to the understandings I 

share here. I also do this as a way to honour the Mi’kmaw people who have embraced me and shared 

knowledge with me. I know that my career today is because of that kindness.  

I then share examples from the two programs that highlight the ways in which Mi’kmaw knowledge 

can be the starting point for learning mathematics and inviting students to engage in mathematical 

tasks that honour who they are as people. Such an approach creates cultural consistency for Mi'kmaw 

learners rather than the usual cultural collisions that occur in most classrooms where their knowledge 

and history is not valued and often ignored completely. It is my hope that these examples might 

provide the reader with the opportunity to reflect upon their own relationships within Indigenous 

communities and to consider what possibilities might open up if they begin in community first. 

Positioning myself in the work 

As a non-Indigenous scholar who has had the privilege of living and learning alongside Mi’kmaw 

peoples for over thirty years, I believe it is important for me to acknowledge how I have come to the 

work and honour those who have helped me come to the understandings I share in this paper. It may 

seem unusual to begin a paper in this way for many, but in Mi’kmaw traditions it is customary to 

 
1St. Francis Xavier University, Canada 

Lisa Lunney Borden: lborden@stfx.ca 
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explain where I come from, where I am rooted, and how I am connected within the community. So 

to that end, I share that I was born and raised (until my teen years) in Saint John, New Brunswick, 

Canada. I grew up in a part of the city known as the Old North End, a working class and lower socio-

economic community where I learned to ride my bike in concrete parking lots and, along with my 

brothers and the other kids in our neighbourhood, built the best sledding track in the alley behind our 

home every winter. In the summers, my family would head to a camp on the Kennebecasis river that 

my grandparents had built in the 1940s following the Second World War. There, I spent days climbing 

trees, swimming in the river, playing baseball in the field, and running through the woods. Even after 

we moved from Saint John to a nearby city of Moncton when I was in 7th grade, we still continued to 

spend our summers at the camp in Chapel Grove. It is the place where I feel most rooted. I can close 

my eyes and walk the grounds in my mind’s eye. I know every tree, every rock, the sound of the birds 

in the morning, the smell and feel of the river and the lands that surround it. It is home. 

Decades later, as a teacher in We’koqma’q First Nation, I would have the opportunity to read part of 

a Mi’kmaw creation story describing how Kluskap, being annoyed with Beaver, went to find him in 

the Kenebecasis River where he lived in his home on Long Island, and chased him up the Wulastuk 

River, now known as the St. John River. Long Island is located directly across the water from our 

family’s beach. Every year, we would take a boat trip with a family friend to spend the day on the 

largely uninhabited island, swimming on the sandy side of the river and climbing through the trees 

and up the rock faces. How is it that I was learning something completely new about a place I knew 

so well? This moment reminded me that as a settler on these lands, even one whose family has been 

here since settlers first came to live on these lands, there are so many stories I do not know. There 

were tens of thousands of years of stories happening long before our arrival. As we consider the 

ubiquity of often empty land acknowledgements that are commonplace at conferences and in 

institutions, I am always aware of my treaty obligations to continue to learn about this place I now 

call home and to be ever mindful of the relatively brief history my ancestors have had in this place.  

A teacher and a learner 

As a university student in both my undergraduate degree and my education degree, I volunteered with 

X-Project, a student society at St. Francis Xavier University (STFX) that supports Mi’kmaw and 

African Nova Scotian youth with education, recreation, and leadership programs. During that time, I 

had many opportunities to build meaningful relationships with community members and learn about 

how the education system failed to serve Mi’kmaw and Black youth. I still recall a community Elder 

telling me that she wished that the youth in her community had their own school. She stated 

emphatically, “I’m not prepared to sacrifice another generation of children waiting for the school 

system to change.” When I became a teacher in a Mi’kmaw community school, I carried those words 

with me. What would it mean to teach in a way that honoured her wish? How could I disrupt the 

status quo to ensure Mi’kmaw children were being well-served by their community school? This 

became a guiding philosophy for my teaching career. 

In 1995, I began working in We’koqma’q First Nation, a Mi’kmaw community along the shores of 

the Bras D’Ors Lakes in Unama’ki (Cape Breton). I taught grades 7 to 12 mathematics, and other 

subjects as assigned, for 10 years. I was consciously a learner in that role, knowing that while I knew 

some things about mathematics teaching, I also had a lot to learn about the community, the people, 

the history, the language, the culture. I haven’t the time or space in this paper to talk about all the 
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ways in which the community supported and embraced me and helped me to do that learning —and 

continues to do so this day—but I am forever grateful for the opportunities I have had and know that 

whatever success I have in this career is in large part due to that generosity (see Lunney Borden, 

2016). Learning to speak Mi’kmaq was an integral part of my learning journey that has shaped how 

I teach mathematics (see Lunney Borden, 2011, 2013) and learning from Elders and knowledge keepers 

has helped me to see that mathematical thinking is so much more than what is depicted in textbooks. 

During my time in We’kqoma’q, it would become part of a collective of Mi’kmaw communities 

working together for the education of Mi’kmaw youth. This collective, known as Mi’kmaw 

Kina’matnewey (MK), would support the capacity building of communities to ensure local people 

were trained as teachers and administrators so that there could be true community control of education 

(Paul et al., 2019). MK advocates for Mi’kmaw education rooted in language and culture and serves 

as the collective voice for all partner communities. Since the MK agreement was signed with the 

federal government in 1998, graduation rates have increased to approximately 90% annually and 

post-secondary enrollments are ever increasing. My ongoing relationship with MK, now as an 

academic, allows me to regularly work with teachers and their students in classrooms constantly 

seeking ways to improve the educational experiences for Mi’kmaw youth in mathematics. 

Indigenous knowledge matters 

I am not alone in my desire to transform mathematics for Indigenous youth; decades of government 

reports and mandates have called upon educators to better serve Indigenous youth in all areas of 

education. The first wave of calls to ensure Indigenous control of Indigenous education came in 

response to the 1969 Trudeau government White Paper on Indian Policy (Government of Canada, 

1969), with the subsequent Indigenous resistance to assimilation that was described in Indian Control 

of Indian Education (National Indian Brotherhood, 1972). Following this call, scholars began to 

advocate for education systems to attend to Indigenous knowledge systems and value the ways of 

knowing inherent in languages (Battiste, 1987). Later, scholars would bring this lens to STEM 

teaching and learning in Indigenous contexts (Cajete, 1994; McIvor, 1995; Mount Pleasant-Jetté, 

1998), and point to the importance of attending to tensions between Indigenous and non-Indigenous 

ways of knowing, being, and doing (Aikenhead, 1996; Lipka, 1994). This eventually led to 

provincial/territorial mandates to integrate Indigenous perspectives in K-12 curricula (Aikenhead & 

Elliott, 2010) that began to appear around 2000 (Wiseman, 2016). This often resulted in mathematics 

being applied to Indigenous contexts in textbooks.  

Students are asked to create a linear system to write equations to describe the perimeter of a Métis 

flag, to write an equation to determine how many of the 545 cones Talise has on her jingle dress if 

she has 185 more than her sister, and to create a linear system to determine how many 6-stone or 7-

stone Inuksuits were sold (presumably to tourists) by a store (Pearson Canada, 2010). All of these 

examples came from one unit in the textbook currently being used for Grade 10 in Nova Scotia. 

Measuring a flag does not recognize the mathematical thinking of the community represented by that 

flag, it is simply a measurement task. Counting cones on a jingle dress does not help students to learn 

about the dress or the role it plays in ceremony. A jingle dress is a prayer dress that is worn by a 

dancer to dance for healing, and many teachings of the jingle dress is that it always has 365 cones, 

one for each day of the year. Talise’s sister has an unfinished dress. Inuksuits are integral to Inuit to 

navigate the Arctic, but I cannot help but wonder if Inuit were consulted of the question advocating 
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selling them to tourists. These types of questions demonstrate how textbook companies tend to take 

a surface level approach to the mandates to teach Indigenous perspectives in all subjects. None of 

these questions recognize the wealth of mathematical thinking in Indigenous knowledge systems, 

they simply apply typical school-based mathematics to images from Indigenous communities, and 

seemingly do so without any consideration of the sacredness of those artifacts. 

In 2006, in a plenary address to the Canadian Mathematics Education Study Group, Edward Doolittle, 

a Mohawk mathematician, argued that rather than imposing mathematics on cultural practices and 

artifacts, it might make sense to begin in community and pull in mathematics as a need arises. This 

begins by taking seriously Indigenous ways of knowing, being, and doing, and the knowledge systems 

that are inherent in these communities. Such approaches have led to promising practices that involve 

beginning in place (Zinga & Styres, 2011), and allowing mathematics to emerge from interesting 

contexts rooted in community knowledge systems (Lunney Borden & Wiseman, 2016). Following 

the Truth and Reconciliation Commission’s 2015 release of the report, even more attention is being 

paid to addressing the need for Indigenous knowledge to have a rightful place in education across all 

subjects and grades.  

As a mathematics educator, I recognize there is a need to question mathematics itself, what counts as 

mathematics, and who gets to decide. Joseph (2010) has argued that ideological beliefs about 

European superiority meant that “The contributions of the colonized peoples were ignored or 

devalued as part of the rationale for subjugation and dominance” (p. 4) in mathematics as they were 

in other subjects. This provokes me to question whose mathematics are we teaching and why? I align 

my thinking with Gutiérrez (2017) who claimed that “School mathematics curricula 

emphasizing terms like Pythagorean theorem and pi perpetuate a perception that mathematics was 

largely developed by the Greeks and other Europeans” (p. 17). Should we continue to perpetuate the 

myth that Pythagoras discovered the theorem often attributed to him when there is considerable 

evidence to show that this theorem was known by Babylonians thousands of years before his birth? 

Were the Greeks the only people to be interested in the relationship between the circumference and 

diameter of a circle? I will share that similar knowledge was passed down through generations of 

Mi’kmaw people in a later section of this paper. The choices we make in mathematics teaching and 

learning can either disrupt these myths of white superiority or reinforce them. For me and my work, 

I have regularly chosen the disruptive path and I believe it has made all the difference. 

In this paper, I share two key ideas that have emerged for me in reflecting upon the work I have done 

over my career as an academic. While these do not represent an exhaustive list of how to better 

address the learning needs of Indigenous students in mathematics, they are two ideas that I believe 

best reflect the goals of MACAS in that they align with ideas of connections across mathematics, 

science and the arts. First, I will discuss the ways in which I have come to understand the importance 

of Elder knowledge and then I will describe the role of ethics in considering mathematics teaching 

and learning experiences. In both instances I will share some examples from work I have done in 

schools and with pre-service and in-service teachers in various programs. 

The significance of elder knowledge 

As a teacher, I would often say to my students that there was mathematical thinking within the 

community, it just didn’t get written down in the textbooks we use in school. Many members of the 

community were known for their ability to make baskets woven from wood, typically black or white 
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ash, often dyed to add colour and occasionally embellished with strands of sweetgrass. Their creations 

were beautifully elaborate, with finely woven strips and curled decorative points (see Figure 1) that 

clearly involved knowledge that would align with what we might describe as mathematical thinking.  

 

Figure 1: Mi’kmaw woven tea cup and basket 

Other community members were known to make beautiful beadwork for regalia, earrings, medallions, 

and other beautiful works of art. Mi’kmaw people were also known for making snowshoes, canoes, 

axe handles, and hockey sticks, all work that involved processes we might describe as mathematical. 

Our textbooks never recognized this sort of mathematical knowledge or, if it did, what was presented 

was often trivializing merely applying Western mathematics to these artifacts rather than considering 

the Mi’kmaw knowledge systems that were apparent in the creation of these objects. Consider for 

example, that Mi’kmaw people had canoes that could travel from Cape Breton to Newfoundland. 

Many Nova Scotians and Newfoundlanders will tell you that a decently gusty wind will prevent the 

ferry from making its way across the Cabot Strait on any given day, so one must wonder about the 

technology involved in creating a canoe that can accomplish this task. Yet our education system 

repeatedly fails to acknowledge the ingenuity and innovation in Indigenous knowledge systems, nor 

does it recognize these knowledges are powerful opportunities for learning what we might today refer 

to as STEM education. As an educator I wanted my students to know that STEM, and mathematics 

in particular, has always been a part of their heritage. 

Early in my academic career, as a young doctoral student, I was excited to have the time and space 

to talk with Elders I had known for years, to have conversations about how we could make more 

explicit the mathematical thinking that was such a part of Mi’kmaw ways of knowing, being, and 

doing. I was very fortunate that my doctoral advisor, Dave Wagner, had recently received funds to 

support these sorts of conversations. He was interested in ethnomathematics and how mathematics 

was being used in out of school contexts. I was interested in talking with Mi’kmaw Elders. This was 

a perfect match. We began our conversations online with a group of Elders and language teachers 

who have gathered at a community school to join us online as poor weather had prevented us from 

going in person (See Wagner & Lunney Borden, 2015, for a more detailed discussion). One Elder 

who joined us that day was the now late Dianne Toney. Dianne was a quill box maker. She made 

boxes from birch bark, wood strips, and porcupine quills (Figure 2). She explained how she always 

began her box with a circular top made from birch bark. She would use a wood strip, similar to those 

used for basket making, to make the side of her box. She would then use an awl to poke holes in the 

bark and weave her porcupine quills through the bark to create her patterns. She told us that to make 

the ring go around the circular top, she would measure three times across the top and add a thumb 

width and it would make a perfect ring every time. I recall anxiously exclaiming that this was “Pi!” 

to which she replied that it was common sense. She explained how she had learned this from 
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generations of quill box makers who had taught her (Wagner & Lunney Borden, 2015). She stated 

that it was important to have a strip that was long enough but not too long to have waste; three and a 

thumb width gave her just this right amount.  

 

Figure 2: Porcupine quill box made by Dianne Toney 

Being able to determine the right amount without waste is an important part of Mi’kmaw ways of 

knowing, being, and doing. This value is reflected in the concept of netukulimk which loosely 

translates to sustainability but captures a deeper sense of responsibility to all one’s relations to ensure 

that one takes only what is needed for survival and, in so doing, ensures the survival of others as well 

including non-human relatives. The mathematics Dianne used emerged from this value of netukulimk 

and in response to the need to figure out how much was enough. Much of what we teach in school 

mathematics has also come from a need to answer questions, but those questions have often been 

rooted in very different value systems.  

Show me your math 

The conversation with Dianne was so inspiring that Dave and I knew we could not be the only people 

engaging in these conversations. We wanted youth to be able to have these sorts of conversations 

with Elders and knowledge keepers. After a few conversations together and then with teachers, 

administrators, and Elders in Mi’kmaw schools, the Show Me Your Math (SMYM) program was 

born (Lunney Borden et al., 2019). SMYM invited Mi’kmaw youth to have conversations with Elders 

in their own community context to learn about the mathematical thinking that has always been a part 

of Mi’kmaw ways of knowing, being, and doing. The program ran from 2007 until 2017 and hundreds 

of projects, including numerous classroom-based inquiry projects, emerged as a part of SMYM. Each 

year one of the MK community schools hosted the annual SMYM Math Fair where hundreds of 

children would share their learning with their peers. The projects themselves took the learning far 

beyond mathematics and allowed children to see how a question about mathematics can lead to 

learning about culture, community, and the impacts of colonialism. Dianne did not live long enough 

to see the legacy that her idea inspired. In May of 2006, as I was preparing to go have a follow up 

conversation with her, I received a phone call from a former colleague and friend telling me that she 

had passed away through the night of a heart attack. I like to think of SMYM as her living legacy of 

teaching children about the vast knowledge within their own cultural communities. 

Waltes  

Waltes is a Mi’kmaw game of chance in which players score points by banging a bowl filled with 

two-sided dice made from bone. When 5 or 6 of the 6 dice turn up on the same side, the player scores 
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points and can collect sticks. If the player scores multiple points in a row, they can earn the notched 

sticks known as the old lady or old man. The aim of the game is to collect all the sticks by continuing 

to play through a series of rounds during which the counting rules change. The counting system is 

quite complex and often Elders are used to support the counting as younger people play the game. 

Waltes became a popular topic to explore in SMYM. Some participants focused on the probability of 

scoring a point or multiple points in a row, others focused more on the general rules of the game and 

the role of counting in the game.  

In Gallagher-MacKay and Steinhauer (2017), former participant, Aaron Prosper, described his 

experiences with SMYM and talked about learning waltes from his grandparents. In addition to learning 

about the game, he also became curious about why there was a hole drilled into the bottom of the waltes 

bowl. This was when he learned about how Indian Agents, representing the Government of Canada, 

would come to Mi’kmaw communities aiming to enforce colonial policies outlined in the Indian Act 

(1876). The Indian Act “sought to place First Nations individuals and communities, their lands, 

and their finances under federal government control” (TRC, 2015, p.110). A part of the Indian act that 

was in place between 1884-1951, commonly called the potlatch ban, prohibited cultural 

ceremonies (Joseph, 2018), which prevented Indigenous people from passing on culture and traditions. 

Waltes became a target for Indian agents who feared the Mi’kmaw would use the bowls for ceremony 

and drilled holes in them to prevent them from holding water. In many families today, there are waltes 

bowls that still carry that scar of colonialism. Aaron talked about how he was learning so much more 

than the mathematics involved in waltes, participating in SMYM allowed him to explore this game in 

a much more holistic way making connections to his family history and the history of his community. 

Birch bark biting 

Birch bark biting became an important part of SMYM as well. Although this was not an early project 

it became a widely celebrated project later in the years of SMYM. The idea for working on birchbark 

biting actually came from a conversation with an elder. We were discussing ideas that we could use 

in mathematics for young children. In a research discussion, she told me, “When I was a young girl, 

my mother used to peel thin strips of bark off the logs and ask us to fold them and bite shapes into 

them.” Naturally, my curiosity was peaked. I asked her more about this as I knew of birch bark biting 

that happened elsewhere in other Indigenous nations in what we now call Canada, but I had not known 

it was something commonly done in Mi’kma’ki. She explained that it had in fact been a common past 

time in her childhood, but she was not sure if anyone still was able to do it. 

I took out some paper, as we had no bark available at the time, and asked her to show me how to fold 

the paper to do the birch bark biting. She instructed me to fold it in half, and then rotate it and fold it 

in half along that first fold. As I worked to line up the paper, I asked her if there was a Mi’kmaw 

word to describe this process. She replied, “Yes! Tetpaikatu!” I asked, “What does that mean?” to 

which she told me “Fold it the right way!” and we both laughed. She suggested that I learn more 

about it by doing some research and maybe students would want to learn it too. I did just that. 

In my searching for information about birch bark biting, I came across an article written by 

Oberholtzer and Smith (1995), two anthropologists, who had travelled the country interviewing 

people who were known to be birch bark biters, each of whom believed they were one of the last 

people in their communities who could still do these bitings. As I read the article and came to a 

paragraph on the second page, I was stopped in my tracks. There was a passage about Margaret 
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Johnson of Eskasoni, a basket maker and birch bark biter. I knew Margaret Johnson, or Dr. Granny, 

as she was commonly called throughout Mi’kma’ki. I knew her family, had taught some of her 

grandchildren at the university, and knew her sister, Caroline Gould, very well as she was an Elder 

and basket maker in We’kqoma’q First Nation where I had lived and worked. As I reached the bottom 

of the paragraph, I saw the line that stated her sister, in another community, was also a birch bark 

biter. I knew that must have been referring to Caroline. Unfortunately, by the time I found this article 

both women had passed on to the spirit world, but knowing their history with birch bark biting, we 

knew it was something students should learn about.  

I set up a plan with a teacher in one of our Mi’kmaw schools and we decided to go work with grades 

5 through 8 to teach them about birch bark biting and to try it for ourselves. We had collected some 

bark but knew we would need more. One of the teachers at the school contacted someone in the 

community who could bring us more bark. When he arrived with a great big barrel of birch bark, I 

asked about it. He told me he had collected it up the mountain when people were logging up there. 

He would go and harvest the bark. He told me that he had collected this bark years ago for Dianne, 

but she never got to use it. I took this as a sign we were on the right path. 

We figured out how to do birch bark biting by watching videos online of other birch bark biters and 

working together to figure it out. The students took to it instantly and found it enjoyable and engaging. 

We were impressed with the work that they were able to create (see figure 3). 

 

Figure 3: Student birch bark bitings 

While it might be tempting to impose mathematics on the artifacts as they are depicted, where the 

real mathematics happens is in the creation of these images. One must really understand that a circle 

is a collection of points that are all equidistant from a centre to create a circle when only biting one 

small part of it and then unfolding the bark to create a full design. The 8-point star was also something 

that required significant understanding of angles to create. The student who created the 8-point star 

in figure 3 had worked for some time on getting it to be just right. He had to think about the angles 

he was employing and how the paper was folded. There is a significant focus on the role of 

visualization in creating birch bark bitings. We also noted that through folding the paper, students 

became very aware of the fractions involved and were able to easily explain halves, quarters, eighths, 

and sixteenths that came from folding the bark. 

In addition to the mathematical thinking that was emerging from the work done with birch bark biting, 

students were also learning stories about the people in their communities who had done it as a 

practice. Stories were being told by teachers who were remembering seeing it happen as a child or 
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hearing stories about it from Elders. Students were also learning more about birch trees and the uses 

of birch bark and the proper way to collect bark. Again, the learning extended far beyond the math. 

Ethics and social justice: Connecting math to our lives and communities 

After years of show me your math, we had many communities wondering about offering it to their 

students who were not attending MK schools. Working with colleagues, we began an outreach program 

called connecting math to our lives and communities. In this program we decided to focus on social 

justice mathematics activities or activities that allowed students to see the power of mathematics to read 

and write the world (Gutstein, 2006). We wanted youth to see that they could tell their own stories using 

mathematics as a tool. This program was expanded to also include local African Nova Scotian 

communities. We drew inspiration from issues impacting the communities we were serving such as 

climate change, soil erosion, environmental racism (Waldron, 2021), and water insecurity to name but 

a few. Water security became one of our first modules following a conversation with a teacher in one 

Mi’kmaw community who shared that they were once again on a boil water order in the community 

and that she thought it might make for a good SMYM project to raise awareness about this issue.  

Drawing from data obtained from the Halifax Regional Municipality’s water authority, we developed 

a series of activities that would allow students to determine how much water their household uses in a 

year. The data was provided in cubic metres and gave the average water use for a 3-montn period based 

on the number of people living in a home. This created numerous opportunities to solve problems that 

would require some multiplicative thinking and proportional reasoning. We had students physically 

construct a cubic metre and then determine how many litres that represented (Figure 4). This provided 

students with a good visual to imagine how much water would be needed for a whole community. It 

also allowed us to model how contaminants, often measured in parts per million (ppm), can be relatively 

small and still impact an entire water system. Using base-ten materials or Dienes blocks, we recognized 

that the cubic metre is the size of the million cube if the small cube represents 1 unit. Therefore, the unit 

cube would be one-millionth of the cubic metre or one ppm. 

 

Figure 4: Students building a cubic metre 

This was one of many examples that show how mathematics can help youth to understand and talk 

about important issues that affect their community. We have engaged in numerous other projects that 

look at the impacts of hurricane force winds, the disruption to an ecosystem when an invasive species 

is introduced, and the role of mathematics in understanding matters of wealth inequality or land back. 

All of these moments allow students to see that mathematics is a useful tool for understanding 

important issues in our society. They allow students to consider the ways in which we use 

mathematics and to discuss if we are being ethical in that use. 
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Concluding thoughts 

For far too long, many children have endured mathematics learning experiences that were not 

designed for them and were not reflective of their lived experiences. The examples I have described 

in this paper are part of my attempts to address this disconnect. Papachese Cree scholar Dwayne 

Donald has argued that “colonial logics” (Donald, 2009, p. 7) divide people and peoples from their 

relations instead of opening a space where they might co-exist (Donald, 2012). Colonial logics have 

been pervasive in mathematics and the projects of SMYM and CMTOLC have been designed in a 

way that aims to open up the kinds of space Donald hopes for. The work I have done alongside 

communities comes from long-standing relationships of listening and learning together to bring the 

community’s knowledge into the classroom’s learning experiences. 

The stories I have shared are but a few examples of how a commitment to respect, reciprocity, 

relationship, and relevance (Kirkness & Barnhardt, 1991) allow for interesting mathematics to emerge 

in ways that allow learners to learn mathematics while also learning about their own cultural identity. 

Such an approach allows students to learn in a culturally consistent way. I end with the following quote 

from an article I wrote with my research partner Dawn Wiseman, inviting reflection from the readers: 

Our intent in teaching and learning is not to begin with STEM expectations or outcomes but rather 

to begin in a place we knew had the potential to teach. Though we cannot guarantee that STEM 

will emerge, we know the potential is in place. In each of our stories, the activities opened 

up spaces from which explorations, questions, and conversations could emerge and live for a 

while. When these spaces open up, what we find is important is taking the time to be with 

what they teach, to pay keen attention to the possibilities for teaching and learning. In this way, 

we see STEM as an artifact of teaching and learning, not a framework imposed upon 

it. (Lunney Borden & Wiseman, 2016, p. 150) 
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Social media, school mathematics, and epistemology 

Mario Sánchez Aguilar1 

 

This article explores the impact of the Internet and social media on the ways young people interact 

with and approach school mathematics. Drawing on empirical research, the article highlights how 

the internet has transformed how students validate mathematical knowledge and seek out 

mathematical help and support from a range of sources, including online forums and educational 

websites. The article also explores how social media has provided a platform for students to express 

their emotions and perceptions about school mathematics in new and innovative ways. Through 

analysis of online activity, the article reveals that students use the internet to seek clarification on 

mathematical doubts and solve mathematical tasks. The findings challenge traditional notions of 

being a mathematics student and how mathematical knowledge is acquired and validated. 

Keywords: Social media, epistemology, school mathematics, emotions, mathematical help-seeking.  

 

Introduction 

For some years, I have been researching how young people use the internet and social media in 

connection to school mathematics. This research has focused on using the internet as a source of 

mathematical help and a platform for sharing opinions and feelings about the subject. 

This research suggests that the internet and social media have significantly impacted how students 

interact with and approach school mathematics. Through their online activity, students can now share 

their perceptions about the nature of school mathematics in new and innovative ways. They are also 

able to seek out mathematical help and support from a range of sources, including online forums and 

educational websites. 

Indeed, the internet has transformed how students validate mathematical knowledge. Rather than relying 

solely on traditional sources of authority, such as textbooks or teachers, students increasingly turn to 

online communities to confirm and verify the accuracy of mathematical information (e.g., van de Sande, 

2011). This trend is a significant development in mathematics education. It challenges traditional notions 

of being a mathematics student and how mathematical knowledge is acquired and validated. 

In this article, I report on some of these findings, focusing on two issues: 

• How people use a social network to express their emotions and perceptions about school 

mathematics. 

• How students use the internet as a source of mathematical help to clarify their doubts and 

solve mathematical tasks. 

 
1Instituto Politécnico Nacional, Mexico 

Mario Sánchez Aguilar: mosanchez@ipn.mx 

mailto:mosanchez@ipn.mx
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Using a social network to express emotions and perceptions about school 

mathematics 

School mathematics is a subject that is commonly accompanied by an array of emotions, be they 

positive or negative, as observed by scholars such as Pepin and Roesken-Winter (2005). These 

emotions are of particular significance, as they form the cornerstone upon which individuals establish 

their relationship with and self-identify in school mathematics. Furthermore, attitudes and beliefs 

towards the subject play a pivotal role in shaping such emotions and are thus integral to understanding 

the complex nature of human interactions with school mathematics. 

On the other hand, social media platforms allow individuals to share and express their emotions 

towards various aspects of their lives, such as work, personal relationships, food, exercise, pets, and 

school (Stieglitz & Dang-Xuan, 2013). Mathematics is not exempt from this phenomenon as a subject 

that often elicits strong emotions of love or hate. Twitter is one of those social media platforms where 

individuals express their emotions related to school mathematics. However, the potential role of this 

platform as a window into the emotions that people associate with this subject is not commonly 

recognized in the specialized literature. 

Twitter has been proposed as a means to engage mathematics students in and out of the classroom 

(Soto & Hargis, 2017), and studies have shown that it positively impacts students’ learning of 

mathematics (Vohra, 2016). Furthermore, Twitter has been used as an organizational tool to manage 

classroom issues, such as reminding students about assignments and upcoming tests (Danesi, 2016). 

Additionally, Twitter has been suggested as a space for exchanging ideas, dialogue, discussion, and 

interaction within the community of mathematics education research (Chernoff, 2014). Nevertheless, 

this article aims to support the assertion that Twitter can serve as a “mood indicator” in relation to 

school mathematics (Danesi, 2016). Specifically, Twitter can be employed to monitor and examine 

the moods and attitudes of individuals toward various subjects, including school mathematics. By 

scrutinizing tweets related to school mathematics, researchers can acquire valuable insights into the 

general public’s perception of this subject. 

In order to advance this argument, a brief analysis of how mathematics is represented in this social 

network is introduced; in particular, a categorization of users’ tweets about school mathematics is 

presented. Such categorization provides insight into the emotions and perceptions that people 

associate with school mathematics nowadays. 

Choosing and categorizing tweets 

Twitter is awash with tweets relating to mathematics, such as popular articles, images, and videos 

about mathematical curiosities, announcements of conferences and academic events by organizations 

and their members, and publicity by scientific companies for new articles and journal issues. Simply 

searching for “mathematics” in Twitter’s search engine confirms this. However, the following 

categorization focuses on tweets where authors express their positive or negative opinions or some 

form of sentiment towards mathematics or its related subjects. This categorization includes emotions 

such as sympathy, dislike, and confusion.  

Over the past years, I have collected a group of tweets by locating them in various ways (see Aguilar, 

2021). These tweets were either in my timeline, retweeted by colleagues and friends, or found through 

monthly keyword searches using terms like “math,” “mathematics,” and “matemáticas.” As a result, 
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I created a collection of 88 tweets, mainly in English but some in Spanish. Most of these tweets focus 

on school mathematics because the authors are likely to encounter mathematics in that setting. 

Additionally, many tweets are written in a humorous or satirical style. Notably, some of these tweets 

have received significant support, as evidenced by hundreds or thousands of “likes.” This appraisal 

could indicate that many users identify with or appreciate the content of these tweets. 

To categorize the 88 tweets, the technique of constant comparison, as described by Teppo (2015), was 

implemented. This process involved creating codes for each tweet, such as “tweets about struggling 

with mathematics” or “tweets regarding difficulties with mathematics homework.” These codes were 

subsequently merged into five overarching categories. The resulting categories are as follows: 

• Mathematics is difficult 

• Mathematics is useless 

• Mathematics tests 

• I like mathematics 

• Love and mathematics 

In the next section, a brief description of each category is provided, along with an accompanying 

image corresponding to a tweet. 

Emotions about mathematics 

The tweets showcased in this section include the publication date, the username of the author, the 

number of likes and retweets they have received, and a link for accessing them. An English translation 

is provided if a tweet was originally posted in Spanish. 

Mathematics is difficult 

This category comprises tweets where users express the challenges of comprehending mathematics 

and the emotions, such as frustration, associated with such difficulties. Additionally, it includes 

tweets that depict mathematics as a complex and mentally demanding topic (Figure 1). 

Publication date: July 10, 2016 

Statistics: 11 retweets; 20 likes 

Translation: When everyone understands the definition of continuity except you 

 

 

Figure 1: Tweet by @Infinito307 retrieved from 

https://twitter.com/Infinito307/status/752341078523596804 

https://twitter.com/Infinito307/status/752341078523596804
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Mathematics is useless 

This category includes tweets claiming mathematics is useless in everyday life or work (Figure 2). 

For instance, some tweets devalue mathematical knowledge compared to skills such as writing a CV 

or understanding how to pay taxes. One example is a tweet that states, “Another damned day without 

using algebra.” 

Publication date: March 5, 2014 

Statistics: 2,172 retweets; 1,540 likes 

 

Figure 2: Tweet by @9GAG retrieved from https://twitter.com/9GAG/status/441090800676777984 

Mathematics tests 

Assessment is a critical element in the academic success of mathematics students. Numerous tweets 

express students’ perceptions and experiences related to mathematics tests, such as difficulty level, unfair 

assessments, or unrealistic contexts in which problems are posed (Figure 3). For example, mathematical 

problems may refer to semi-reality, which some students find problematic (Skovsmose, 2001). 

Publication date: February 13, 2014 

Statistics: 502 retweets; 349 likes 

 

Figure 3: Tweet by @funnyorfact retrieved from 

https://twitter.com/funnyorfact/status/434160175592009729 

https://twitter.com/9GAG/status/441090800676777984
https://twitter.com/funnyorfact/status/434160175592009729
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I like mathematics 

Although individuals share tweets expressing positive emotions towards mathematics, these tweets 

are not retweeted or favorited as frequently as those belonging to the abovementioned categories. 

While some people explicitly state the positive emotions that mathematics evokes in them, others 

express their affection for mathematics without providing any additional context (Figure 4). Some 

employ more imaginative means to convey their admiration for mathematics. 

Publication date: October 10, 2018 

Statistics: 1 retweet; 1 like 

 

 

Figure 4: Tweet by @lonesomegargoyl retrieved from 

https://twitter.com/lonesomegargoyl/status/1050072549185466369 

Love and mathematics 

Indeed, some individuals tweet about both love and mathematics; however, their tweets do not pertain 

to a love for mathematics. Instead, these people tweet about romantic love, which may include 

sentiments of heartbreak, and attempt to draw connections to mathematics. An instance of such a 

tweet is: “I understand multivariable calculus, but I do not understand life without you” (Figure 5). 

Publication date: December 24, 2014 

Statistics: 8 retweets; 45 likes 

Translation: I understand multivariable calculus, but I do not understand life without you 

 

 

Figure 5: Tweet by @Mairefest retrieved from 

https://twitter.com/Mairefest/status/547663369923473408 

https://twitter.com/lonesomegargoyl/status/1050072549185466369
https://twitter.com/Mairefest/status/547663369923473408
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This article section aimed to illustrate how social networks can serve as a medium to gain insight into 

students’ emotional experiences while studying mathematics in school. This kind of data source can 

enhance our comprehension of how students perceive and engage with mathematics in an educational 

setting.  

Using the internet as a source of mathematical help 

School mathematics is an educational experience where students commonly encounter doubts. It is 

also common for students to seek sources of help to clarify these doubts. The sources of mathematical 

help that students resort to can be varied: their classmates, the mathematics teacher, a family member, 

or a book, among others. Thus, help-seeking is an intrinsic part of studying and learning school 

mathematics. The help-seeking behaviors that enable students to clarify their doubts independently 

can be interpreted as manifestations of self-regulated learning. 

Along with Danelly Susana Esparza Puga from the Universidad Autónoma de Ciudad Juárez in 

Mexico, we have studied how digital resources such as the internet, mobile devices, and social 

networks shape the help-seeking behaviors of mathematics students. Our initial explorations focused 

on internet-based mathematical help-seeking practices among Mexican engineering students (Aguilar 

& Esparza Puga, 2015; Esparza Puga & Aguilar, 2015). Specifically, we sought to answer the 

following questions: 

• What websites do students consult when they need help in mathematics? 

• What do students use those websites for?   

• Why do students trust the mathematical information provided by such websites? 

The research method to address these questions primarily focused on self-reports from participating 

students provided through focus groups and individual interviews. The findings showed that the most 

frequently used sites for mathematical help-seeking were the Google search engine, Facebook, and 

YouTube. The latter was identified as the most popular source of help among the participating 

students. Regarding the uses that students give to these sites, the following were identified: 

• Finding different ways to solve a mathematical problem 

• Clarifying doubts and reinforce knowledge  

• Getting ready-made results or mathematical problems solved 

• Comparing their results or answers to problems with other answers to similar problems found 

on the internet 

• Catching up with a class they skipped  

Regarding the issue of trust in mathematical information provided by these websites, we began to 

notice that students do not seem to pay attention to the intrinsic mathematical properties (Lithner, 

2003) of the obtained information but rather base their assessment on features not related to 

mathematics, such as the academic prestige of the person or institution that publishes information. 

These two student statements illustrate this situation: 

Student: YouTube seems reliable to me because university teachers upload the videos. 

Student: SlideShare...I think is more reliable because there the doctors [PhDs] send [slides 

presentations]. 
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Delving into the use of YouTube as a source of mathematical help 

The outcomes of initial exploratory studies prompted us to delve deeper into the type of mathematical 

assistance students search for on sites like YouTube and the reliability criteria they use to validate 

the mathematical information they discover there. We pursued this research by making 

methodological improvements to complement the self-reports and interviews used in the exploratory 

studies. In particular, we employed surveillance software to record students’ activity when seeking 

mathematical help online (see methodological details in Aguilar & Esparza Puga, 2020). Direct 

observation of students’ online activity when attempting to solve a mathematical problem allowed us 

to identify two types of help-seeking behaviors among students.  

The first type is executive help-seeking, which refers to situations where students aim to find 

something or someone to assist them in solving a problem or achieving a goal on their behalf. For 

example, when students turned to community-driven question-and-answer websites like “Yahoo! 

Answers,” where they could effortlessly obtain answers to specific mathematical tasks. This type of 

behavior, in which students seek mathematical help in community forums—some of them without 

getting too involved in the construction of the answer or solution—has been previously reported by 

van de Sande (2011). 

The second type of help-seeking behavior identified was instrumental help-seeking, where students’ 

searches are more focused on promoting a self-understanding of an idea or a problem-solving process. 

For example, we found evidence of a student who identified a YouTube video through a Google 

search based on keywords such as “definite integral exercises solved,” “calculate area under a curve,” 

and “area under the quadratic equation curve.” The student could extrapolate the integration technique 

they learned by repeatedly watching the YouTube video to solve a mathematical task involving 

solving the integral ∫ (−𝑥2 + 4𝑥) 𝑑𝑥 
4

0
(see Aguilar & Esparza Puga, 2020). 

In the study by Esparza Puga and Aguilar (2023), the general characteristics of the mathematical help 

students obtain through YouTube videos are explored, particularly regarding the qualities of the 

sources they prefer and trust. Using a popular channel of videos on school mathematics called 

“julioprofe” as a reference (see http://youtube.com/julioprofe), we interviewed first-year engineering 

students who used these videos. The interviews aimed to identify (1) the characteristics of the 

mathematical help that students obtain through these videos, and (2) the criteria for reliability that 

students use to trust—or not trust—the mathematical information obtained from these sources. 

The results reveal general characteristics of the mathematical help students obtain through this type 

of video: 

• It is multifunctional. Through these videos, students get multipurpose mathematical help. 

They can use it when they have attended class but have doubts and want to clarify them, or 

they can use it to introduce themselves to a new mathematical topic. They can use it when 

they cannot attend class and want to catch up on lessons. In addition, the mathematical help 

they get from these videos could cover different school mathematical topics, from the most 

basic to the most advanced.  

• It is always available. Another prominent feature of this mathematical help is that it is 

available anytime, anywhere—as long as the student has internet access. Students can turn to 
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this source of mathematical help in and out of school and, as one student put it, “if you are 

doing the assignment at 3 in the morning, it [the help] is always there.” 

• It is private. Students can refer to this source of help privately, without revealing their doubts 

to their classmates or the lecturer. Some studies suggest that students may feel ‘dumb’ in front 

of their peers when asking for help or expressing doubts in mathematics class (Newman & 

Schwager, 1993). The mathematical help obtained on YouTube eliminates these 

inconveniences because it can be consumed privately. 

• It is easy to use and self-paced. Some of the interviewed students highlighted the brevity and 

simplicity of the videos by julioprofe, as well as the presenter’s step-by-step explanations. In 

addition, the students have personal control over the pace since the video can be stopped, 

skipped, or repeated as many times as needed. 

As for the criteria students use to trust the mathematical information contained in these videos, the 

findings suggest that trustworthiness is based on three elements: 

• People close to them recommend it. Several students describe how their lecturers, parents, or 

classmates recommended that they look for mathematical help on YouTube or the julioprofe 

channel. We think that the fact that authority figures such as their lecturers or their parents 

recommend it—in addition to their classmates—promotes students’ trust in this source.   

• It works. Another element that we believe increases students’ confidence in this source of 

mathematical help is that it has helped them to solve assignments and even pass exams—as 

some of the students interviewed report. We think that when students receive positive notes 

and evaluations after using julioprofe’s videos to study, they interpret it as tangible proof of 

the effectiveness of those videos as study support. 

• It gets ‘likes’ and positive comments. Students pay close attention to the ‘likes’ and comments 

that the videos receive from other YouTube users. Some interviewed students analyze the 

number of ‘likes’ and the kinds of comments a video receives to weigh its quality. In the case 

of julioprofe, the videos receive thousands of ‘likes’ and positive comments. 

Concluding discussion 

In this paper, two points have been illustrated. Firstly, social media serves as a space where 

individuals express their emotions related to school mathematics. These online social spaces can be 

used as a window into people’s attitudes and feelings about school mathematics. Researchers and 

educators can better understand how individuals feel about school mathematics and how they engage 

with it by analyzing public sentiment on social media. This approach can lead to developing effective 

strategies and interventions to improve attitudes towards mathematics and enhance learning 

outcomes. The use of Twitter as a tool for monitoring and analyzing public sentiment toward school 

mathematics has the potential to advance our understanding of this important subject area. 

Secondly, this paper has highlighted how the internet and social media have changed how students 

search for mathematical help and validate mathematical knowledge. We are witnessing a shared 

epistemology among new generations of students, in which mathematical knowledge is independently 

obtained beyond the walls of the mathematics classroom. Its certainty or truth is validated not based on 

its intrinsic mathematical qualities but through indicators of the authority of the sources and other social 

indicators such as recommendations, comments, or the number of likes obtained by the source of 
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mathematical information. This transformation in acquiring mathematical knowledge and validating its 

certainty has significant implications for mathematics education and calls for new approaches to 

teaching and learning mathematics that consider the role of social media and internet resources. 

The emergence of a new epistemology in which mathematical knowledge is validated through 

indicators of authority on social media, such as likes, comments, and recommendations, is a significant 

shift in how students perceive the value and reliability of mathematical information. This new way of 

validating knowledge transforms the traditional notion of mathematical authority and expertise. 

Students increasingly look beyond traditional sources of authority, such as teachers and textbooks, to 

validate their understanding of mathematical concepts. In this new epistemology, the trustworthiness 

of mathematical knowledge is based on the collective judgment of a community of users on social 

media platforms, who provide feedback on the quality and relevance of the information shared. This 

has implications for how we understand the nature of mathematical knowledge and the role of authority 

and expertise in the field of mathematics. Furthermore, it highlights the importance of digital literacies 

in mathematics education. Students must learn how to evaluate and critically assess the credibility of 

mathematical information found on social media platforms. 

While this new epistemology challenges traditional approaches to teaching and learning mathematics, 

it also offers opportunities for innovation and collaboration in the field. By embracing the power of 

social media and digital technologies, educators can engage students in new and exciting ways, 

facilitating meaningful and authentic learning experiences that align with the changing nature of 

mathematical knowledge in the digital age. Therefore, mathematics educators need to recognize and 

address the emergence of this new epistemology, developing pedagogies that encourage critical 

reflection and evaluation of mathematical information found on social media platforms while also 

promoting a deeper understanding of the nature of mathematical knowledge and the role of authority 

and expertise in the field. 
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The relation between skills and competencies in the KOM framework 

of mathematical competencies: A discussion 

Oliver Kauffmann1 and Uffe Thomas Jankvist1 

 

In this paper, we explore an influential conceptualisation of mathematical competencies, the KOM-

framework (Niss & Jensen, 2002; Niss & Højgaard, 2011, 2019). In particular, we take a critical 

look at the relation between competency and skills. This specific discussion reflects a more general 

concern: Why and how should we care about the body in discussions of mathematical competencies?  

Keywords: Competencies, skills, supervenience, embodiment. 

 

Introduction 

One way to address the questions about the body’s role for mathematical competencies is to adopt a 

metaphysical perspective. Competencies of a mathematical kind in human beings, whatever a proper 

analysis will reveal about their nature, are all—at a minimum—contingently related to the body. Let 

us cautiously begin our discussion by taking a look at this idea. 

Assume for the sake of argument that the mathematician and philosopher René Descartes was right, 

when he found about our epistemic capabilities of mathematics and geometry that knowledge of 

simple entities like numbers and figures is possible by intuition and deduction only (Descartes, 1966). 

Since intuition and deduction, according to Descartes, take place in the soul, which, according to his 

argumentation, is a substance (i.e., an entity the existence of which does not depend on anything else) 

different from the substance of extended bodies, the body is not, apparently, important for these 

capabilities at all. However, even if Descartes was right in his epistemic assumption about the soul’s 

prominent role for mathematical and geometrical insights, these activities of the soul would still be 

related to the body, although in a contingent, causal way. We indulge for instance in thinking about 

the possible solution to a mathematical problem. We try out different solutions; we act, reach out for 

paper and pencil, jot down numbers and equations by tapping our keyboard, scratch our scalps while 

we ponder, move our eyes, move in the chair and so on and so forth. Causal interactions take place 

between our thoughts and our body. Thus, even when a Cartesian view on metaphysics is assumed, 

i.e., a conception according to which two substances exist—the material one extended in space, and 

the thinking substance not extended in space—the body and the thinking soul stand in a causal relation 

to each other. The explanatory details of this assumed interaction are highly debatable, as it has been 

since Descartes’ days. When we are doing a mathematical calculation, applying our relevant skills, 

knowledge, and competencies, this is only the instantiation of one out of many possible subsets of 

this causal story. Substance dualism has been extensively criticized and is, if not fallen completely 

out of favor, at least considered as a last resort in philosophy of mind (for a good introductory account 

pro et con substance dualism, see Kim, 2010; for a recent defense of substance dualism, see Foster, 

1989). On the other hand, a number of materialist positions of a reductive sort advanced through the 
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second half of the 20th century, have also met critique. They have been found wanting to the extent 

that they do not explain a number of peculiar characteristics of the mind, in particular the qualitative 

aspects of conscious awareness and the feature of some or all mental states, that they exhibit 

intentionality (i.e., have representational content). Instead, many philosophers and scientists have 

turned to so-called ‘non-reductive accounts’ of the relation between the body and the mind. In our 

discussion of the role of the body in relation to mathematical competencies, we also have a non-

reductive account of the mind as our background assumption. To be a bit more precise, we endorse a 

version of ‘the supervenience thesis,’ about the relation between body and mind. This condition is 

also in line with some thoughts behind the KOM-framework of mathematical competencies and 

serves as a thinking tool in this domain. 

The supervenience thesis 

The psychophysical supervenience thesis is an instance of nonreductive materialism. In more general 

terms, a set of M properties (‘M’ for ‘mental’) is said to supervene on a set of P properties (’P’ for 

‘physical’) with respect to a domain D just when two entities in D, which happen to be indiscernible 

with respect to P, are necessarily indistinguishable with respect to M. That is to say, two entities in D 

that differ with respect to M necessarily differ with respect to P, but not conversely. Thus, the 

possibility of the existence of entities, which differ with respect to P but not with respect to M, is not 

excluded. In other words, this is an instance of an asymmetrical dependency relation between a set of 

(so-called) supervening properties M and the(ir) ‘supervenience base,’ the set of relevant properties 

P. If D is the domain of psychophysical relations, the thesis of psychophysical supervenience says 

that all psychological or mental properties M (states, event, processes) supervene on the physical 

properties P (we use the terms ‘psychological’ and ‘mental’ interchangeably.) All mental properties 

are dependent on the bodily properties, and not the other way around (cf. e.g., Kim, 1982). The 

rationale for psychophysical supervenience is threefold. Firstly, this assumption accommodates that 

the psychological sphere has properties, which are not properly accountable for in a reductive 

explanatory framework. Thus, psychophysical supervenience leaves room for mental properties ‘over 

and above’ the physical domain per se; these properties are different from the physical (including 

bodily) properties, although they depend on the physical properties. In particular, interest has been 

shown in dealing with two specific mental features within a supervenience framework: intentionality 

and consciousness. ‘Intentionality’ refers to the specific, relational feature of all (or most) mental 

phenomena. To be in a mental state involves an object of that state: what the state is about. Mental 

states are directed at something. They represent something. We cannot think, desire, know or entertain 

a belief without thinking of, desiring, knowing or believing something. For short: mental states 

represent. ‘Consciousness’ refers to the particular way some living organisms are capable of 

representing. When an organism is conscious of something, there is a particular way for the organism 

to be in that mental state. To be consciously aware of something means that ‘there is something it is 

like for the organism to be in that state’ (Nagel 1974, p.436). For a zombie, in contrast, there is not 

something it is like for it to be in its representational state. A supervenience account is a nonreductive 

account of the mental to the extent that it acknowledges the peculiarities of intentionality and 

consciousness. Here it differs from blunt reductive theories like behaviorism and materialism. On the 

other hand, the asymmetric dependency-relation between the mental and the physical in 

psychophysical supervenience still gives the physical domain priority. This feature is what makes the 

position palatable for many with a naturalistic leaning. Secondly, psychophysical supervenience 
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apparently leaves room for the existence of mental-to-mental causation and mental-to-physical 

causation: My desire to find the solution to a mathematical problem makes me think, and makes me 

grab for a pencil, etc. As Kim has pointed out, however, the psychophysical supervenience thesis 

might run into severe troubles with both mental-to-mental and mental-to-physical causation (Kim, 

1998, 2005). Yet, we cannot go into these delicate matters here. Thirdly, and most important, 

psychophysical supervenience catches the intuition, that the mental, despite being something ‘over-

and above’ the physical, is still dependent on the physical, not only by not being a substance of its 

own, but also by being dependent on the physical.  

What this ‘dependency’ precisely comes to is the crux of the matter in the domains where the 

interrelations of knowledge, skills, and competencies are discussed—and, as we shall see, in the 

discussions of embodiment. In accordance with psychophysical supervenience, the physical is 

primary, and the mental is secondary to the physical. We do have empirical evidence for the mental 

properties being (somehow) causally dependent on the physical (in particular from the neurological 

and the neuropsychological domains), and do not have evidence for the physical as supervening on 

the mental. Out of the vast quantity of ‘physical particulars’ (particles and fields in spacetime) we are 

acquainted with, only a very small subset exhibits mental properties, whereas (apparently) all known 

mental properties are connected with particulars of a physical kind. 

Competencies depend on skills and knowledge 

The background condition about supervenience in the psychophysical domain is relevant for dealing 

with the connections between competencies, skills, and knowledge in education. The idea is simple. 

Competencies (somehow) depend on skills (and knowledge), without being reducible to such. And just 

as mental properties from the perspective of psychophysical supervenience are not conceived as free 

floating, but instead depend on the existence of embodied organisms, neither do competencies exist as 

free floating ‘properties’, but are described as features or actions of embodied human beings with 

certain skills and knowledge. Since achievement of skills depend on the body, and the competencies 

depend on the achieved skills and knowledge, the competencies somehow depend, at least partially, on 

the body. The competencies partly rely on our bodies to the extent that competencies (partly) rely on 

skills, and skills only come into the world through our learning bodies. This being said, various points 

of view can be adopted, for instance for taxonomical or evaluative purposes, from which competencies 

per se can be described and explored. This is similar to the possibility of exploring structural features 

of the mind per se, such as intentionality and conscious awareness, as mentioned.  

Mathematical competencies 

The notion of mathematical competencies, as opposed to mathematical skills and knowledge, has 

gained momentum within the past decades in mathematics programmes, not only in Scandinavia and 

Northern Europe, but also for example in Columbia and not least in the international assessments 

PISA (OECD, 2019). Kilpatrick states that school mathematics sometimes “is portrayed as a simple 

contest between knowledge and skill” while “Competency frameworks are designed to demonstrate 

to the user that learning mathematics is more than acquiring an array of facts and that doing 

mathematics is more than carrying out well-rehearsed procedures” (2014, p. 87). And certainly, 

competency has become a key construct today in the educational paradigm within various areas (cf. 

Sadler, 2013; Stacey, 2010; Stacey & Turner, 2014), overshadowing and replacing former, dominant 

constructs such as knowledge and skill. As examples of competency frameworks, Kilpatrick (2014) 
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mentions three: (1) the five strands of mathematical proficiency as identified by the Mathematics 

Learning Study of the US National Research Council; (2) the five components of mathematical 

problem-solving ability identified in the Singapore mathematics framework, and (3) the eight 

competencies of the Danish KOM framework. The Danish KOM framework (Niss & Jensen, 2002; 

Niss & Højgaard, 2011) was also implemented as the basis of the PISA framework of mathematical 

competencies (e.g., Stacey & Turner, 2014). More precisely, seven of KOM’s eight mathematical 

competencies were part of PISA until approximately 2018. In addition, there is now also the Chinese 

Core Mathematics Competencies framework (MOE, 2018, 2022). 

Either explicitly or implicitly, all these competency frameworks will have to come around an 

explanation of the relations between competencies, skills and knowledge. The authors behind the 

KOM framework deal explicitly with these relations, and by applying the supervenience thesis into 

this discussion along the lines indicated, we are able to pinpoint and discuss the essential ‘hinge 

conceptions’ of the relation between procedural skills, knowledge, and competencies and suggest how 

to potentially develop the KOM framework further along this line of thought. 

The KOM framework and supervenience  

The basic, original idea of KOM was to formulate the concepts of mathematical competence and 

competencies “with particular regard to their possible roles in the teaching and learning of 

mathematics” (Niss & Højgaard, 2019, p. 10). Hence, the main thought behind the KOM-framework 

was that the teaching of mathematics would be able to promote the students’ development of these 

competencies and the related kinds of ‘overview and judgment.’ The overall characterization of 

‘mathematical competence’ in accordance with KOM is described as “having knowledge of, 

understanding, doing, using and having an opinion about mathematics and mathematical activity in a 

variety of contexts where mathematics plays or can play a role” (Niss & Højgaard, 2011, p. 49). This 

overarching conception of competence spans eight distinct, yet mutually related, separate competencies, 

often illustrated by an 8-leafed flower, the so-called KOM-flower as shown in Figure 1. 

 

Figure 1: The ‘KOM-flower’ (From Niss & Højgaard, 2011, p. 1) 

The competencies are divided into two groups, the first referring to “the ability to ask and answer 

questions in mathematics and with mathematics” (Niss & Højgaard, 2011, p. 50); the second to “the 
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ability to deal with mathematical language and tools” (p. 50). The first group covers the four 

competencies of mathematical thinking, problem handling, modelling and reasoning. The second 

group covers the competencies of mathematical representation, symbols and formalism, 

communication and aids and tools. Both of these groups have (almost exclusively) explicitness 

(through language) as characteristics, and generally the competencies are conceived as cognitive of 

nature (cf. e.g., Niss & Højgaard, 2019, p. 12). It is important to notice that none of the eight 

competencies can be possessed and developed in complete isolation from other competencies; hence, 

the non-empty intersection at the centre of the KOM-flower (Figure 1). 

Recently the authors of the original KOM-report found reasons to revisit the conceptualization of the 

basic notions “in order to provide an updated version of the original conceptual framework and 

terminology” (Niss & Højgaard, 2019, p. 9). In this paper, they give a concise, but instructive 

exposition of the specific relation between knowledge, procedural skills, and mathematical 

competencies. But why procedural skills? In the very detailed 2011-report (Niss & Højgaard, 2011), 

procedural skills are not addressed at all. In contrast with the generic term ‘skills,’ the term 

‘procedural’ only appears once (in the expression “procedural knowledge” (p. 49)). In the 2019-paper, 

however, ‘procedural skills’ are in focus. This probably reflects the upsurge of interest in, and 

acknowledgment of, the importance of action for understanding mathematical competencies. 

Competence is now considered as “someone’s insightful readiness to act appropriately in response to 

challenges of given situations” (Niss & Højgaard, 2019, p. 12). With reference to what was already 

recognized by George Pólya (1957/1945), they see enactment of mathematics “as the essential 

constituent in the mastery of mathematics” (2019, pp.12–13). Let us therefore take a look at 

procedural skills versus competencies.  

By ‘procedural skill in mathematics,’ the authors mean a person’s ability to perform, with accuracy 

and certainty, a particular, methodologically well-defined—oftentimes algorithmic—goal-oriented 

type of undertaking (Niss & Højgaard, 2019). What they suggest is that the relation between 

procedural skills and competencies can be conceived as a specific type of compositional relation. The 

existence of competencies relies on the existence of procedural skills, but without the competencies 

being reducible to these skills (Niss & Højgaard, 2019). They also claim that skills can be seen as 

necessary, but not sufficient for the competencies. `The explanations for competencies not being 

reducible to skills, and for the claim that skills are not sufficient for competencies, must probably, at 

least partially, be found in the following condition: “exercising a given competency typically requires 

the activation of a multitude, probably hundreds, of different, very specific procedural skills, each of 

which draws upon a reservoir of factual knowledge. For example, the symbols and formalism 

competency involve the procedural skill of performing rule-based transformations of algebraic 

expressions in different mathematical domains or determining the derivatives of combinations of 

standard functions” (p. 20). Let us dub this condition, ‘the many-one constraint.’ Regarding the 

authors’ idea about a specific kind of compositional relation, they elaborate with a metaphor from 

chemistry. Huge molecules (e.g., polymers), composed out of atoms, result in the existence of new 

properties, and competencies are comparable with the properties of such molecules, the atoms of 

which (with their lower-level properties) are the procedural skills (Niss & Højgaard, 2019). Although 

this conception in the domain of chemistry and biology is perhaps better known as ‘emergentism,’ it 

is not different from the supervenience thesis (the authors do not use these theoretical labels), and 

psychophysical supervenience can consequently be seen as a special case of emergentism (cf. e.g., 
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Kim, 2010). With a definition of emergentism from Kim: “When aggregates of material particles 

attain an appropriate level of structural complexity (‘relatedness’), genuinely novel properties emerge 

to characterize these systems” (Kim, 2006, p. 292).  

How does this particular ‘picture’ of the relation between skills and competencies advanced by Niss 

and Højgaard fare? Clearly, the higher-order properties themselves, differentiated as they are in the 

eight different leaves of the KOM-flower, are applicable in the preparation of specific curricula, for 

the evaluation of performances, and in other ‘praxis directions.’ The authors end up their 2019 paper 

by listing a number of ‘educational uses,’ and certainly the KOM-framework has a strong track-record 

of applicability. The theoretical underpinnings of KOM are also helpful for developing a deeper 

understanding of skills and competencies. Clearly, the competencies rely on the skills, in the sense 

that the competencies do not come into existence without the skills, and the picture of emergence is 

perhaps truly helpful here. It gives us a hand in uncovering a bit more about what this ‘reliance’ would 

amount to. Part of the idea with emergentism is that the bottom layer of the particles necessitates the 

existence of the aggregated, more complex layer of the system with its new properties. The bottom 

layer plays an aggregating role for bringing the aggregated level of (new) properties into existence. 

This means, that an instantiation of a particular set of aggregating properties necessarily leads to the 

set of aggregated properties. Mentioned en passant with respect to this specific point, emergentism 

and supervenience may come apart. Thus, it is debated whether supervenience (as defined above in 

this paper) also entails this stronger ‘necessitating feature’ between the base level and the supervening 

level of properties. (cf. e.g., Kim, 2010, p. 9). Yet, with respect to Niss and Højgaard (2019), this 

necessitation from the base level is a stronger claim than merely saying, as they do, that the base with 

properties P is necessary, but not sufficient for M, or, in terms of skills and competencies, that skills 

are necessary, but not sufficient for the competencies coming into existence. In accordance with 

emergentism, the aggregating properties, i.e., the supervenience base, is sufficient for bringing about 

the emerging properties. Transferred to the domain of skills and competencies, the skills would then 

after all be sufficient for bringing competencies into existence. This is obviously not what Niss and 

Højgaard claim, but if the metaphor with emerging properties is taken at face value, this is what their 

view implies, and it therefore appears to harbour an inconsistency.  

Instead of giving in on Niss and Højgaard’s assumption that procedural skills are necessary, but not 

sufficient for competencies, we should likely give in with respect to the usefulness of the model of 

emergentism instead. The problematic part of emergentism applied to skills and competencies is the 

condition about ‘necessitation.’ Competencies are certainly related to various procedural skills, 

through the subject’s acquisition of them—but the competencies do not come fully into existence 

from the mere acquisition of these skills. Remember that they are not reducible to the skills 

themselves, according to Niss and Højgaard. As mentioned above, part of the explanation for this 

probably lies in ‘the many-one constraint.’ If we give in with respect to emergentism because of a too 

close bond between skills and competencies (via ‘necessitation’), how should we then understand the 

relation between skills and competencies? 

Perhaps we could say—slightly vaguely—that competencies only ‘bloom’ through a person’s 

applying the acquired skills and knowledge in various contexts. This would be in line with the last 

part of Niss and Højgaard’s definition: “Competence is someone’s insightful readiness to act 

appropriately in response to the challenges of given situations.” (Niss & Højgaard, 2019, p. 12). 

Would it be clearer to seek a Solomonic middle ground by preserving that competencies, on the one 
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hand, (really) are acquired through learned skills (and knowledge) and are attributable as properties 

of persons (p. 11), but, on the other hand, only (really) come into (mature?) existence through 

application in shifting (new?) contexts? This would be a way to accommodate our willingness to 

speak of types of levels in mastery of a specific competency, e.g., in dealing with symbols and 

formalism or with mathematical modelling (cf., Niss & Højgaard, 2019, pp. 21–22). Still, it can be 

asked, are competencies as properties of persons attributable to subjects apart from their being 

applied? Put differently, can persons possess them independently of their attribution? The 

acknowledgement of the importance of this aspect of competencies is clearly indicated by the first 

part of Niss and Højgaard’s definition: the ‘readiness to act.’ This line of argumentation would make 

competencies look more like so called ‘dispositional properties’ (like solubility, flammability, etc.). 

Perhaps then a ‘readiness to act’ account of mathematical competencies, where these are not reducible 

to learned skills (+knowledge), fares better?  

If we ignore the attribution-aspect, and instead seek an account of the skill-competency relation in terms 

of ‘readiness to act,’ how would such an account look, then, if we remind ourselves, that ‘competencies 

cannot be reduced to skills (+knowledge)’? Well, why are competencies considered not to be reducible 

to (relevant) skills? The central elements of the supervenience thesis plus what we dubbed ‘the many-

one constraint’ is helpful with an answer to this. Remember that supervenience is an asymmetrical 

dependency relation. Competencies need skills (+knowledge) in order to exist—not the other way 

round. On the other hand, competencies are different from the skills they rely on. In the scholarly 

discussions of the nature of mind and body, it is obvious what the specific candidates for ‘nonreductive’ 

properties are, motivating for theories accommodative for mental properties being different from 

physical properties—despite the former being dependent on the latter for their existence. Consciousness 

and intentionality are such ‘top candidates,’ as we have seen in the motivation for psychophysical 

supervenience. How do competencies in any comparable way ‘stand out’ from skills from the 

perspective of Niss and Højgaard? What we called ‘the many-one constraint’ describes how a given 

competency typically requires the activation of a multitude, probably hundreds, of different, very 

specific procedural skills, each of which draws upon a reservoir of factual knowledge” (Niss & 

Højgaard, 2019, p. 20). How does the quantitative difference between ‘the many skills’ and ‘the one 

competence’ add up to a qualitative difference of a nonreductive sort? Why can’t we just say that a 

specific competency is nothing more than the sum of the individual elements (skills) it relies on, and 

therefore reducible to those skills (+the individual sets of knowledge related to each skill)? 

If (and only if) competencies are considered in abstraction from the contexts of application, uses, 

exercises, and challenges, they will be reducible to the constituent skills. Each competency would 

arguendo then just be the mere instantiation of the arithmetic sum of its constituent parts, the relevant 

skills. The competencies thus considered are mere resultant, additive properties of their parts. So, in 

abstraction, we might after all be able to consider a competency as a dispositional property of a 

person. Yet, in the concrete, things look differently. “The core of mathematical competency,” Niss 

and Højgaard declare, “is the enactment of mathematics in contexts and situations that present a 

certain kind of challenge” (2019, p. 20). No such challenges arise from the abstract perspective of 

competencies as ‘readiness to act’ on one’s acquired knowledge and skills. The potential irreducible 

character of a competency comes from the transfer of an individual’s acquired knowledge and skills 

into a new situation. Competencies from this ‘conjunctive perspective’ are from an abstract 

perspective reducible to sets of skills, the learning of which leads to ‘readiness to act’ in a 
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dispositional sense. Yet, they are irreducible precisely when they are challenged through being put to 

use in new contexts. Still, the question of the precise role of the body within a framework like this 

calls for further reflections. A number of mental features such as our capabilities for abstract thinking, 

modelling, and representing equations and numbers, continue to challenge truly embodied accounts 

of mathematical competencies. 

Embodiment and mathematical competencies 

In the last three-four decades, we have been witnessing a turn in cognitive sciences, social sciences, 

and the humanities: the turn toward understanding learning, feeling, and cognizing as situational 

enacted, embedded, extended, and embodied activities, standardly referred to as ‘4E’ (Lakoff & 

Johnson, 1999; Shapiro, 2019; Varela et al., 1991). An additional number of Es such as ‘Emotion’ 

have been added over the years, but only very recently, ‘Education’ has arrived. These 

conceptualizations of embodied cognition have also had an impact on the understanding and 

exploration of learning and skills within mathematics (see e.g., Lakoff & Nuñez, 2000). A number of 

‘alternative,’ ‘implicit’ skilled ways to learn various mathematical concepts, such as  ‘proportional 

equivalence’ (e.g., Abrahamson et al., 2021; Hutto et al., 2015), have challenged cognitivism by 

claiming that these skills are not requiring any appeal to explicit, content-full representations, but 

instead appear to be based on “content-free enactive explorations that unfold within learning 

contexts” (Hutto et al., p. 385). The literature on embodied mathematical cognition gives suggestions 

to the effect that mathematical skills from a learning perspective ultimately rely on bodily skills 

(Lakoff & Nuñez, 2000; Nuñez et al., 1999). In (Hutto et al., 2015), for example, proportional 

equivalence (e.g., instantiated by ‘6:10 = 9:x’) was learned by students through developing a 

bimanual motor-action scheme, where the manipulation of handles dynamically correlated with visual 

feedback from cursors on a screen enabled the students to learn ‘proportional equivalence’ without 

the involvement of any mathematical symbolism. Ideas like these invite for pursuing 

reconceptualizations of procedural knowledge in mathematics (e.g., Star, 2005), and give evidence 

to the effect that certain mathematical tasks can be accomplished by alternative, embodied, enacted 

procedures (e.g., Abrahamson et al., 2021; Donovan & Alibali, 2021). Still, one central set of issues, 

that continues to tease and frustrate researchers who address skill-based perceptual or cognitive task 

in attempts to find non-cognitive ‘alternative’ ways to accomplish them, is the plethora of high-level 

tasks of cognition, such as thinking and having reflective conscious awareness. These issues certainly 

appear pertinent and relevant to address for educational purposes, where the emphasis on formal ways 

of teaching and didactical thinking has been the tradition. 

Clearly, the KOM framework is conceived from a cognitive perspective. So much the more surprising 

it is that Niss and Højgaard (2011) at the same time are very much aware of a number of elements 

(potentially) closely connected to an embodied perspective, which they leave out or behind: “we have 

maintained mathematical competence and competencies as basically cognitive constructs. In so 

doing, the significance of affective, dispositional and volitional factors of mathematical mastery and 

learning has in no way been disregarded, but these factors are of a different nature to the ones taken 

into account in this framework” (Niss & Højgaard, 2019, p. 26). Also, their very definition of 

competence as “someone’s insightful readiness to act appropriately in response to the challenges of 

given situations” (2019, p. 12) should be discussed in the context of so called ‘enacted theory,’ a 

theory complex in cognitive science of a 4E kind, which emphasizes the importance of cognitive 
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agents’ implicitly knowing the interrelations between their sensory inputs and motor capabilities (see 

e.g., Hutto (2005) for some varieties of enacted theory). 

Even if we do not have evidence for the strong claim that all types of mental states supervene directly 

on the skilled habitual behaviour of agents, the existence of alternative, embodied routes to obtaining 

mathematical tasks of various sorts indicates the bandwidth and plasticity of our learning repertoire 

and demonstrates that importance of this research for educational purposes. 

Acknowledgement 

This paper is part of project 8018-00062B under Independent Research Fund Denmark. 

References 

Abrahamson, D., Dutton, E., & Bakker, A. (2021). Towards an enactivist mathematics pedagogy. In 

S. A. Stolz (Ed.), The body, embodiment, and education. Routledge. 

Descartes, R. (1996) [1628]. Regulae ad dirictionem ingenii. In C. Adam & P. Tannery (Eds.), 

Oeuvres de Descartes (tome X). J. Vrin. P.349–488. 

Donovan, A. M., & Alibali, M. W. (2021). Action and mathematics learning. In S. A. Stolz (Ed.), 

The body, embodiment, and education. Routledge. 

Foster, J. (1989). A defence of dualism. In J. Smythies & J. Beloff (Eds.), The case for dualism (pp. 

59–80). University of Virginia Press. 

Hutto, D. D. (2005). Knowing what? Radical versus conservative enactivism. Phenomenology and 

the Cognitive Sciences, 4, 389–405. 

Hutto, D. D., Kirchhoff, M. D., & Abrahamson, D. (2015). The enactive roots of STEM: Rethinking 

educational design in mathematics. Educational Psychology Review, 27(3), 371–389.  

Kilpatrick, J. (2014). Competency frameworks in mathematics education. In S. Lerman (Ed.), 

Encyclopaedia of mathematics education (pp. 85–87). Springer. 

Kim, J. (1993). Psychophysical supervenience. In J. Kim & E. Sosa (Eds.), Supervenience and 

Mind: Selected Philosophical Essays (pp. 175–193). Cambridge University Press.  

Kim, J. (1998). Mind in a physical world: An essay on the mind-body problem and mental causation. MIT Press. 

Kim, J. (2005). Physicalism, or something near enough. Princeton University Press. 

Kim, J. (2006). Philosophy of mind (2nd ed.). Westview. 

Kim, J. (2010). Philosophy of mind (3nd ed.). Westview. 

Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to 

Western thought. Basic Books. 

Lakoff, G., & Nuñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings 

mathematics into being. Basic Books. 

Ministry of Education of the People’s Republic of China [MOE]. (2018). Mathematics curriculum 

standards for senior secondary schools (2017 version). People’s Education Press. [in Chinese]. 

Ministry of Education of the People’s Republic of China [MOE]. (2022). Mathematics curriculum standards 

for compulsory education (2022 version). Beijing Normal University Press. [in Chinese]. 

Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83, 435–450. 

Niss, M., & Højgaard, T. (Eds.) (2011). Competencies and mathematical learning: Ideas and 

inspiration for the development of mathematics teaching and learning in Denmark. IMFUFA, 

Roskilde University. 

Niss, M., & Højgaard, T. (2019). Mathematical competencies revisited. Educational Studies in 

Mathematics, 102(1), 9–28.  

Niss, M., & Jensen, T. (2002). Kompetencer og matematiklæring. Ideer og inspiration til udvikling 

af matematikundervisning i Danmark. Uddannelsesstyrelsens temahæfteserie no. 18. Ministry 

of Education. 



 33 

Nuñez, R. E., Edwards, L. D., & Matos, J. F. (1999). Embodied cognition as grounding for 

situatedness and context in mathematics education. Educational Studies in Mathematics, 

39(1/3), 45–65.  

OECD. (2019). PISA 2018 assessment and analytical framework. PISA, OECD Publishing.  

Pólya, G. (1957/1945). How to solve it (2nd ed.). Penguin Books. 

Sadler, D. R. (2013). Making competent judgments of competence. In S. Blömeke, O. Zlatkin-

Troitschanskaia, C. Kuhn, & J. Fege (Eds.), Modeling and measuring competencies in higher 

education: Tasks and challenges (pp. 13–27). Sense Publishers. 

Shapiro, L. (2019). Embodied cognition (2nd ed.). Routledge. 

Stacey, K. (2010). Mathematical and scientific literacy around the world. Journal of Science and 

Mathematics Education in Southeast Asia, 33(1), 1–16. 

Stacey, K., & Turner, R. (2014). Assessing mathematical literacy: The PISA experience. Springer 

International Publishing. 

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics 

Education, 36(5), 404–411.  

Varela, F. J., Rosch, E., & Thompson, E. (1991). The embodied mind: Cognitive science and human 

experience. MIT Press. 
 

 

 

 

 

 

 

 

 

 

 

 



 34 

Computational thinking and mathematics viewed as 

interdisciplinarity 

Morten Misfeldt1, Uffe Thomas Jankvist2, Raimundo Elicer1, Andreas Lindenskov Tamborg1, 

Thomas Brahe1, Eirini Geraniou3 and Kajsa Bråting4 

 

The international trend towards young people learning programming and computational thinking in 

compulsory school has led to different developments in mathematics teaching. In this paper, we view 

this as a case of interdisciplinarity and explore what the interplay between mathematics and 

computational thinking in K-9 schools in Denmark, Sweden and England looks like through this lens. 

Based on national curriculum standards, resources and knowledge about educational practices, we 

compare intentions and realities in these three countries. The analysis suggests that the school 

systems in the three countries all look at the interplay between mathematics and programming as 

interdisciplinarity—but as different types of interdisciplinarity. In England, we see a weak integration 

of disciplines driven by a pragmatic need, in Sweden a deeper integration of disciplines, and in 

Denmark there is a focus on understanding and overview across disciplines.  

Keywords: Programming and computational thinking, technology, mathematics, interdisciplinarity.  

 

Introduction 

Across the globe, there is a general push in the direction that young people should be taught 

programming and computational thinking in compulsory school (Bocconi et al., 2022). In some 

countries, this ambition is addressed through mathematics teaching (Tamborg et al., 2023). This 

makes it interesting to view the interplay between technology education and mathematics education 

as a case of interdisciplinarity in itself, where, in the best of all cases, there can be a mutual 

fertilization between disciplinary and pedagogical traditions. From a historical perspective, we 

observe a movement from an early (beginning around 1980) interest in children programming to 

improve their mathematical capabilities and provide new ways of working with mathematics, to a 

period with a lesser focus on the interplay between programming and mathematics (roughly 1990-

2010) (Clements & Sarama, 1997). We now find ourselves in the middle of what can be characterized 

as a “second wave” of the interplay between programming and mathematics education (Lodi & 
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Martini 2021). A little before 2010, people from computer science and industry stated that children 

need to learn about computing—or “computational thinking” (Wing, 2006). In the years to follow, 

some countries began to take up this challenge and implemented computer science and programming 

in compulsory school.  

This paper explores the questions: To what extent may the interplay between mathematics and 

computational thinking in K-9 schools in Denmark, Sweden and England, be viewed as examples of 

interdisciplinarity? And, how does this unfold on the level of national curriculum standards, in 

resources and in educational practices? 

The main purpose of addressing these questions is to create an “orienting framework” for the 

navigation of resources to support the teaching of programming and computational thinking and 

mathematics. The questions are addressed by a theoretical discussion viewing examples of practices, 

resources and political documents from the three countries Denmark, Sweden and England. These 

three countries all work with implementing programming, computational thinking, digital 

competencies, and technology as part of their curricula. Hence, by juxtaposing the approaches we 

might be able to see more clearly the nature of the interdisciplinary relations between computational 

thinking and mathematics. In the paper, we first describe the research project “Programming and 

Computational Thinking and Mathematical Digital Competencies,” and the theoretical and 

methodological constructs that we apply.  

The project “Programming and Computational Thinking and Mathematical 

Digital Competencies”  

In the project, “Programming and Computational Thinking and Mathematical Digital Competencies,” 

we take as outset that we are in the middle of an international wave that pushes implementation and 

Programming and Computational Thinking (PCT). With that outset, we look at the policies and 

practices in the three different countries of Denmark, Sweden and England. We apply the Danish 

competencies framework (Niss & Højgaard, 2011; 2019) augmented with the notion of 

“Mathematical Digital Competencies” (MDC) (Geraniou & Jankvist, 2019) in order to study and 

compare the way PCT is implemented. MDC involves awareness of which tools to apply for what 

mathematical purposes, using digital technology reflectively for problem-solving and learning, and 

engaging in a techno-mathematical discourse.  

Within the project, we have combined a comparative study of how PCT is integrated with 

mathematics teaching at the compulsory level in the three countries with design experiments. To 

develop synergies between mathematics teaching and PCT in the Danish school system, we have 

compared approaches and resources from the three countries (this work is described in Elicer & 

Tamborg, 2022; 2023). Based on these findings, we have conducted design-based interventions to 

verify and refine our understanding of potential synergies between PCT and mathematics, and we are 

currently in a process of developing easy-to-use teaching sequences as an educational resource for all 

teachers (Misfeldt et al., 2022).  

Theory and method: Comparing interdisciplinarity  

We view the way that computational thinking is incorporated in the mathematics curriculum through 

the lens of interdisciplinary configurations. The idea is that this lens will allow us to look at the way 

that mathematics meets PCT in teaching and in curricular documents.  
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Jensen and Jankvist (2018) distinguish three kinds of interdisciplinarity addressing different types of needs.  

(1) Interdisciplinarity as integration of disciplines on the border of two existing disciplines. 

Examples are mathematical economics, bioinformatics and geophysics as examples. This 

kind of interdisciplinarity is driven by a demand for specialization.  

(2) Interdisciplinarity as the integration of disciplines. Examples are business studies, which 

integrates economics, sociology, law, etc.; medical science, which integrates chemistry, 

physiology, psychology, etc.; engineering, which integrates mathematics, physics, geology, 

etc. This type of interdisciplinarity is driven by a demand to integrate elements from basic 

disciplines to create an applied discipline.  

(3) Interdisciplinarity as understanding and overview across disciplines, or as a kind of 

“Allgemeinbildung,” a type of interdisciplinarity that is a response to negative and 

unfortunate consequences of disciplinary specialization. This involves creating the need for 

bridge-building and the ability to see problems through different disciplinary lenses. 

We will use these three types of interdisciplinarity to look at the Danish, the Swedish and the English 

responses to increased focus on programming and technology education, more specifically how 

mathematics and PCT are related in school discourse and practice in the three countries.  

Using a combination of an inductive and a deductive comparative strategy, we show the differences 

and similarities in the configurations of interplay between PCT and mathematics (Bereday, 1967). 

More precisely, we shall use the three kinds of interdisciplinarity developed by Jensen and Jankvist 

(2018) to develop a decontextualized comparison of the relationship between the teaching of PCT 

and that of mathematics in the three countries. We view the implementation stories from the three 

countries as critical cases, where the everyday mathematics teaching acts to support the comparison. 

In the comparison, we build on the short implementation stories described below. These descriptions 

are reconstructions based on previous research that we refer to in the individual sections describing 

the approaches of the three countries. 

Implementing programming and computational thinking in the three countries 

In England, one main reason for focusing on computational thinking is to support the industry 

(Tamborg, 2022). The structure resembles the scientific discipline. In a sense, it is a kids’ version of 

computer science, which has been implemented in the educational system since 2013 as the school 

subject “computing” (Misfeldt et al., 2020). In Sweden, the work with programming and computational 

thinking has been much closer related to the subject of mathematics. In 2018, it was decided that all 

Swedish students should work with programming in relation to their mathematics classes, from grade 

1 through grade 12 (Bråting & Kilhamn, 2021). At compulsory school level, programming was 

integrated in close connection to algebra and at upper secondary level mainly in relation to problem 

solving. Furthermore, this initiative was motivated by equity, and especially by an aim to avoid a new 

type of digital divide between people who can create value with technology and people who 

increasingly become consumers and spectators to life through technology (Heintz et al., 2017). 

Denmark, on the other hand, has been experimenting with a new topic of “technology comprehension” 

in a number of schools for the past four years. Technology comprehension has been tested as both a 

subject in its own right, and as a part of other existing school subjects, e.g., first language (L1), 

mathematics, science, and social science. In both cases, the motivation has mainly been citizenship and 
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democratic empowerment (Smith et al., 2020). The focus for technology comprehension encompasses 

design competencies, computational thinking, citizenship, and technical skills.  

We now provide a more detailed account for each of the three countries, beginning with Sweden. 

Details about the Swedish approach 

In 2017, the Swedish K-9 curriculum was revised with more focus on students’ digital competence.  

This led to the revision of all major school-subjects, and in this process, programming became part 

of mathematics throughout grade levels 1 to 9 (Heintz et al., 2017; Swedish National Agency of 

Education, 2018). The Swedish mathematics curriculum is organized in six areas: Understanding and 

use of numbers; Algebra; Geometry; Probability and statistics; Relationship and change; and Problem 

solving. Programming was added to algebra at all grade levels and described in the following way 

(Swedish National Agency of Education, 2018, pp. 56–59): 

●  Grades 1–3: How unambiguous, step-by-step instructions can be constructed, described, 

and followed as a basis for programming. The use of symbols in step-by-step instructions. 

●  Grades 4–6: How algorithms can be created and used in programming. Programming in 

visual programming environments. 

●  Grades 7–9: How algorithms can be created and used in programming. Programming in a 

visual and text-based programming environment. 

For grades 7–9, algorithms are also mentioned in relation to problem solving, and computer 

simulations are mentioned in relation to statistics: 

●  How algorithms can be created, tested, and improved in programming for mathematical 

problem solving. 

●  Assessment of risk and chance based on computer simulations and statistical material. 

Computational thinking is not mentioned in the Swedish national curriculum document. Instead, the 

focus is mainly on algorithms and programming. The Swedish curriculum displays a clear progression. 

In the early years, programming is approached by focusing on step-by-step instruction and symbols, 

often in so-called unplugged activities. In middle school, focus is on algorithms in visual environments, 

and from grade 7 using text-based programming (Bråting & Kilhamn, 2021). Helenius and Misfeldt 

(2021) analyze the Swedish and Danish situation and noticed that programming itself is the main focus 

in Sweden, whereas there is less focus on how programming can be used as mathematical tools. Another 

characteristic of programming in the Swedish mathematics curriculum is its focus on practices and 

problems, whereas programming concepts and data structures, are more or less absent. 

Details about the Danish approach  

Denmark has not yet made a final decision on revising the curriculum to include informatics-related 

topics (as of 2023). Nevertheless, in 2018, the Ministry of Education initiated a pilot project where 

46 schools began teaching a new subject called technology comprehension with the ambition to teach 

K-9 students the ability to critically relate to and shape technology (Børne- og 

Undervisningsministeriet (BUVM), 2018). The project began with developing a curriculum for 
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technology comprehension as a subject in its own right. This curriculum included four competence 

areas, namely: Digital empowerment; Digital design and design processes; Computational thinking; 

and Technological agency. Each competence area was defined by three to five subject matter areas 

presented as pairs of skill set and knowledge. In the case of computational thinking, the subordinated 

subject matter areas are: Data; Algorithms; Structures; and Modeling.  

As previously mentioned, the project experimented with two different implementation strategies; (1) 

as an independent subject as described above and (2) as integrated into other subjects, among those, 

mathematics. Six technology comprehension components were integrated in mathematics: (a) digital 

design and design processes; (b) modeling; (c) programming; (d) data, algorithms and structures; (e) 

user studies and redesign; (f) computer systems. (BUVM, 2019). Even though these elements are 

added to the curriculum, they are not explicitly related to existing mathematical competencies and 

subject matter areas. This results in a curriculum consisting of juxtaposed components from 

technology comprehension and mathematics, thereby placing the responsibility of developing 

meaningful integrations in concrete teaching on the shoulders of teachers.  

Details about the English approach   

England was among the very first countries to focus on PCT in relation to compulsory school. This 

happened in 2014 with a new computing curriculum (Department for Education, 2014a). The 

computing curriculum replaced a prior mandatory Information and Communication Technology 

(ICT) curriculum. This topic mostly covered basic usage of technology and information search and 

the ability to assess quality of information (Department for Education and Employment, 1999). A 

central reason for this change was that the ICT curriculum fell short in preparing students to contribute 

to the ICT industry, which was important for economic growth in England. Furthermore, there was a 

decline in recruitment in ICT and computing courses (Council of Professors and Heads of Computing, 

2009; the Royal Society, 2012; Microsoft, 2007). 

The argument that schooling should promote PCT since industry needs ICT professionals is not 

unique to England, but the English case is very clear in how this motivation leads to policy and 

implementation. The English computing curriculum can be seen as a simplified version of computer 

science as taught in tertiary education. In headlines, this curriculum aims at:  

1. understanding and applying fundamental principles of computer science,  

2. the ability to analyze problems in computational terms, 

3. evaluating new and familiar technologies, and  

4. to educate students to become responsible, competent, confident and creative users of 

technology. (Department for Education, 2013)  

The content consists of: (a) algorithms and programming; (b) logic; (c) computational thinking; (d) 

digital content and potential uses for digital technology; (e) safety and citizenship; and (f) systems, 

search and software (Department of Education, 2013). The teachers of the previous ICT subject were 

assigned the responsibility of teaching computing (Larke, 2019). This, despite the fact that “ICT” and 

“computing” were highly different. Formally, there is no relation to mathematics, but both teachers 

of mathematics and mathematics education researchers have taken up the focus on programming and 
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computational thinking (e.g., Benton et al., 2017; 2018). Hence, on the level of pedagogical practice 

the relation between mathematics and PCT does exist.  

PCT and mathematics teaching in the borderland between school subjects and 

political intentions with schooling 

We view the problem of understanding the interdisciplinary configuration between programming and 

computational thinking, on the one side, and mathematics, on the other, on a continuum from policy 

intentions and documents, over resources to actual teaching practice.  

We have previously argued (Tamborg et al., 2022) that the politically decided curricular structures 

that specify the interplay between programming and mathematics can be described as displayed in 

figure 1. Sweden has implemented deep integration. This is visionary, but it also naturalizes the 

relation between programming and mathematics. In Sweden, programming is focused on algorithms 

and it is closely related to algebra. 

                     Integrated (SE)     Juxtaposed (DK)  Separated (ENG) 

 

Figure 1: Three types of curricular integration between mathematics and computation thinking. From 

Tamborg et al. (2023) 

In Denmark, the details of the relation between programming and mathematics were not specified in 

the curriculum, but the intention of relating mathematics and technology is clear. In the English case 

there is no relation between mathematics and programming, but both feed into a pragmatic concern 

about raising students’ abilities in relation to technical and mathematical situations.  

In order to compare the policy level intentions and official curricula in more detail, we can distinguish 

scholarly knowledge and practical knowledge (Helenius & Misfeldt 2021). On the level of scholarly 

knowledge, the Danish approach is broad, since it combines computer science, sociology of 

technology and experiments with integration into several of the school subjects (mathematics, 

science, first language and craftsmanship). England has a focus on the academic discipline of 

computer science and on educating for becoming part of the technology industry. In Sweden, the 

strong relation to mathematics, and especially to algebra, means that the scholarly knowledge 

addressed is focused on the intersection of computer science and algebra, in particular algorithms and 

variables. Regarding the practical knowledge addressed in the curricular documents, the Danish 

technology comprehension has an affinity to design thinking and the ability to prototype and develop 

technology. Furthermore, the Danish approach puts emphasis on analyzing the influence of 

technology on society. The practical knowledge, which is the focus of the English and Swedish 

documents, is much more related to programming and algorithms. The differences between the 

scholarly and practical knowledge in focus are shown in Table 1.  
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Table 1: The way that the curriculum documents focus on scholarly knowledge and practical 

knowledge 

Country Scholarly knowledge Practical knowledge 

Denmark Broad knowledge of technology, and 

technology as part of topic/in topic 

Design of technology and analysis of 

technological situations 

England Computer science for kids in a sense 

monodisciplinary 

Programming and technology development 

Sweden Mathematics, algebra and algorithms, 

viewed as an integrated topic 

Algorithms and programing addressing 

mathematical problems 

 

If we look at the teaching resources that are provided for working with PCT, we can also see a clear 

difference in the focus and way that the interplay between technology and computing is addressed. 

Based on examples, we have previously shown that the materials in the three countries differ (Elicer 

& Tamborg 2022; Misfeldt et al., 2020). We have analyzed teaching resources from Denmark and 

Sweden to discuss the difference in how they address this interdisciplinarity (Elicer & Tamborg, 

2022; Misfeldt et al., 2020). Because of the status of the curricula, there are published textbooks in 

Sweden with programming integrated into mathematics. In Denmark, these resources are online 

teaching units for the pilot project on technology comprehension. Some resources focus mostly on 

programming and algorithms while others take a broader view, one including the handling of data 

and computer modeling. Danish tasks cover a wide range of mathematical topics—arithmetical, 

geometrical, and statistical—concepts, while Swedish tasks mainly focus on patterns and sequences.  

As for the English case, there is no such intent of making PCT and mathematics an interdisciplinary 

field. However, there are resources produced and made available by, for example, the ScratchMaths 

project (Benton et al., 2017). Their core contribution is a collection of teaching resources that express 

what they can do for students’ mathematical learning. This is the so-called 5E’s pedagogical 

framework for action: Explore; Envisage; Explain; Exchange; and bridgE. The latter attempts to have 

students connect computational and mathematical ideas. 

Our comparable data about the teaching practice in the three countries consist of expert interviews 

(further elaborated in Tamborg et al., 2022). Based on this, we see that in Denmark there is a broad 

covering of all aspects of PCT in comparison with England and Sweden. However, while we in the 

public discourse see a relatively clear orientation in Denmark towards democratic education, this is 

less clear when looking at the combination of interviews and curriculum (Tamborg et al., 2022).  

In England, it was a surprise that socioeconomic inequality was so present in the analysis. Previous 

research (Tamborg et al., 2022) unanimously found a clear orientation in English policy toward 

building a strong competitive workforce.  

Discussion: Interdisciplinarity as a window to national differences when 

implementing PCT 

The notion of interdisciplinarity helps us understand some of the differences between how PCT is 

implemented in Denmark, Sweden and England.  

In England, we see what Jensen and Jankvist (2018) describe as interdisciplinarity as integration of 

disciplines on the border of two existing disciplines, driven by a demand for specialization. On the 
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policy level, we see more or less no integration between mathematics and PCT, as the computing 

topic is formally not attached to the mathematics curriculum. Still, the purpose of adding computing 

to the curriculum is not completely disjoint from the larger purpose. Even though the computing 

curriculum as such is unrelated to the mathematics curriculum, the English case shows that this does 

not imply that no integration is pursued. Firstly, integration can be left to teachers and material 

developers as in the ScratchMaths project. Furthermore, the basic incentive of the curriculum has 

been to develop a strong workforce that can specialize in technology development. In a sense, the 

interdisciplinary interplay between mathematics and PCT in the English school system is not driven 

by overt political intentions. The unfolding of the interdisciplinary relation between mathematics and 

PCT is rather driven by non-policy agents, such as teachers, scholars and NGOs. Nevertheless, there 

is a rich environment oriented towards experimenting with making use of PCT as a part of 

mathematics education. In addition, mathematics and computing are aligned on the level of values, 

since the overall political intention of implementing PCT is to enhance students’ inclination towards 

careers in technology development. This leads us to suggest that the English situation is framed by a 

demand for specialization and the need to develop strong skills at the intersection between 

mathematics and PCT. That is, it is interdisciplinarity of the first type since the tech entrepreneur 

integrates elements from both mathematics and computer science to develop new solutions in a 

specialized borderland between the two disciplines. Even though the goal of integrating mathematics 

and PCT is relevant and to some extent articulated in relation to the English implementation of PCT, 

there is no such thing as an attempt to develop a new topic or integrated scholastic discipline. The 

need for integration is pragmatic rather than epistemic. 

In Sweden, we rather see what Jensen and Jankvist (2018) refer to as interdisciplinarity as the 

integration of disciplines. Jensen and Jankvist provide examples of business studies that integrate 

economics, sociology, law, etc.; medical science, integrating chemistry, physiology, psychology, etc.; 

and engineering, which integrate mathematics, physics, geology, etc. This type of interdisciplinarity 

is driven by a demand to integrate elements from basic disciplines to create an applied discipline, in 

Swedish case one of algebra and algorithms with an independent object and an epistemic approach. 

On the curriculum level, we have entitled this as an integrated approach to PCT and mathematics. 

PCT components are integrated into specific mathematical areas (e.g., programming in algebra). 

While this on the one hand offers little autonomy for teachers, it does on the other hand attempt to 

create a meaningful and more complete disciplinary package of objects and methods that allows 

students and teachers to move beyond a pragmatic need for specialized skills and towards a more 

fully integrated disciplinary identity. This is seen in the ambitions and structure of the national 

curriculum standards as well as in the tendency to address genuine mathematical problems with PCT 

in the Swedish materials and resources (Elicer & Tamborg, 2022). Nevertheless, there are also 

indications that the integration is not complete. Bråting and Kilhamn (2021) show that there is still a 

way to go before the programming tasks that are being promoted always serves a mathematical goal, 

and Helenius and Misfeldt (2021) show that the integration between mathematics and PCT is still 

mainly on the practical level and less developed on the theoretical level. 

In the Danish case, there is a strong resemblance to what Jensen and Jankvist (2018) describe as 

understanding and overview across disciplines. This is a form of general education or 

“Allgemeinbildung” (Bildung). As previously mentioned, this type of interdisciplinarity is a response 

to negative and unfortunate consequences of disciplinary specialization and involves creating the 
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need for bridge-building and the ability to see problems through different disciplinary lenses. The 

ambition of looking at technology as digital empowerment, digital design and PCT, and from various 

disciplinary perspectives, including—but not limited to—mathematics, does reflect an ambition on a 

very high level of abstraction. The specific description on how mathematics and technology can be 

related in the Danish curriculum are, nonetheless, more juxtaposed than integrated, since the details 

in the relation between PCT and mathematics are largely left to the teachers. Nevertheless, there is a 

number of indications that the scaffolding is in fact too weak for the current state of implementation. 

Hence, there is a risk that this autonomy does not really lead to a realization of interdisciplinarity as 

understanding and overview. Helenius and Misfeldt (2021) contrasted the Swedish—“practice 

without theory”—integration between mathematics and PCT, to a Danish situation of “theory without 

practice.” Research on Danish teachers’ usage of teaching materials based in relation to the 

experimental program in technology comprehension shows that the materials are followed with high 

fidelity, which could indicate that teachers do not feel skilled to adapt the material on their own 

(Børne- og Undervisningsministeriet, 2021). In that sense, Denmark clearly aims at a Bildung style 

of interdisciplinarity, i.e., that of type three. Still, the currently weak teacher capacity and slow 

approach to implementation challenges this ambition, since the teachers tend to only follow 

predetermined materials. We present an overview of the various approaches and levels in Table 2.  

Table 2: Interdisciplinary configuration at various levels 

Country Policy level Resource level Teaching practice 

and expert level 

Configuration 

England Separated, but shares 

values of driving 

recruitment for 

technology 

development 

Programming and 

technology 

development is 

addressed by 

numerous resources 

Structured by 

schools/colleagues. 

Heavy use of 

resources. 

Interdisciplinarity 

type 1- focusing on 

specialization into 

technology 

professions 

Sweden Integrated Algorithms and 

mathematical 

problem solving 

Structured by the 

national level. 

Tendency to practical 

integration without 

theoretical 

integration 

Interdisciplinarity 

type 2 – developing 

an applied discipline 

of algebra-algorithms 

and computing 

Denmark Juxtaposed Mission, design and 

empowerment driven 

Autonomy in 

principle - but strong 

dependence on 

materials in practice. 

Interdisciplinarity 

type 3: understanding 

and overview across 

the many aspects of 

digitalization 

 

Conclusion: PCT and mathematics as two of many things 

In this paper, we have shown that the integration of PCT into school can relate in a number of different 

ways to mathematics teaching. One way of looking at these different approaches is through the lens of 

interdisciplinarity. This lens has allowed us to untangle some of the differences in ambitions and reality 

of England’s, Sweden’s and Denmark’s ways of relating PCT and mathematics teaching as different 

ways of doing interdisciplinarity. The question of if the interplay between mathematics and 

computational thinking in K-9 schools in Denmark, Sweden and England, may be viewed as examples 
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of interdisciplinarity can be answered with a ‘yes’. Still, we can also see that there are ways in which 

the ambitions of the curricular documents are not completely fulfilled in the developed resources and 

in educational practices. Especially Sweden seems to attempt to develop a sort of applied discipline 

between algorithm and algebra, but in the current practice there are little theoretical concerns of why 

this makes sense and what it can offer. Similarly, Denmark seems to be attempting at developing an 

approach to teaching technology that highlights understanding and overview across various fields, but 

lacks practical foundations in technology development, programming and computational thinking.  

The fact that we can view the interplay between PCT, on the one hand, and mathematics, on the other, 

as very different cases of interdisciplinarity in the different countries calls for further research. We 

have previously tried to understand the necessity and nature of mathematical digital competences 

(MDC) (Geraniou & Jankvist, 2019) as an attempt to update the normative aspect of mathematics 

instruction to meet digitalization. Nevertheless, the division of labor between mathematics and PCT 

is of a different nature in the three countries under scrutiny, meaning that there is a further need to 

understand what parts of MDC that reside “naturally” in mathematics teaching and what parts that 

may potentially be outsourced to a computing curriculum.    
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The Lifestyles Project: An interdisciplinary integration of 

mathematics with science, arts and English in the Québec context 

Midhat Noor Kiyani1, Limin Jao1, Cinzia Di Placido1 and Sun Jung Choi1 

 

Learning mathematics in a silo presents it as a complex discipline that is detached from the real 

world. As such, there is a growing interest in interdisciplinary mathematics education (IdME) in 

Québec’s secondary education. However, novice secondary teachers in Québec find it challenging to 

adopt IdME due to a dearth of literature providing concrete examples of this approach. Thus, this 

narrative practice-based paper discusses a descriptive example from a Québec school where IdME 

took place in a Secondary 2 (Grade 8) classroom through the “Lifestyles Project.” The Lifestyles 

Project was sub-divided into three consecutive assignments (Hobbies, Careers, and Bedroom 

Design), interspersed in the mathematics course throughout the year. In each of these assignments, 

students were graded using rubrics designed by the two collaborating teachers of the integrated 

subjects. Learning from the example of the Lifestyles Project, we encourage researchers and 

educators alike to further examine the ways to develop IdME initiatives and transform mathematics 

instruction to make it engaging, meaningful, and relevant for the students.  

Keywords: Interdisciplinary mathematics education, Québec secondary education, project-based 

learning   

 

Introduction 

Mathematics knowledge and processes are used in multiple aspects of everyday life. Engaging in 

mathematics fosters critical thinking and problem-solving skills, which are also crucial to addressing 

complex global issues. Although mathematics plays an important role in society, most students still 

find it vague, abstract, and detached from reality (Mosvold, 2008). As a result, interdisciplinary 

mathematics education (IdME) has received considerable attention in recent years (Chao-Fernández 

et al., 2019; Chi, 2021; Kokko et al., 2015). In line with this trend, Québec’s Education Program 

(QEP) emphasizes the importance of interdisciplinarity and cross-curricular competencies for 

meaningful and engaging mathematics learning (Québec Ministry of Education, 2007a, 2007c, 

2007d). As underscored in the QEP, “teachers should encourage students to discover the connections 

that may be made with other subjects…through interdisciplinary activities in the classroom or the 

school” (Québec Ministry of Education, 2007c, p. 14). Students can improve their mathematical 

understanding if they are able to connect it with other fields of knowledge/disciplines (Québec 

Ministry of Education, 2007c). 

Despite the QEP’s emphasis on connecting mathematics with other disciplines, interdisciplinarity 

remains an ongoing concern in Québec secondary education. Novice secondary teachers face multiple 
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challenges in adopting interdisciplinary teaching and learning into their practices (Hasni et al., 2015; 

Lenoir & Hasni, 2010). Particularly, there is a dearth of literature that provides concrete examples 

and evidence of IdME to learn from (Lindvig & Ulriksen, 2019). In an attempt to address the 

highlighted issue, our narrative practice-based paper discusses an example from a Québec school 

where IdME took place in a Secondary 2 (Grade 8) classroom. In this paper, we aim to provide a 

detailed description of the implementation of an interdisciplinary project-based learning approach in 

a real-life setting. This interdisciplinary mathematics project will serve as an example of 

interdisciplinary learning and teaching within secondary mathematics education. 

Curriculum integration models and IdME 

The notion of integrated curriculum implies that different forms of knowledge and disciplines will 

work together to impart meaningful learning (Pring, 1971). In an integrated approach to teaching and 

learning, multiple disciplines are fused and combined together instead of teaching them separately 

(Costley, 2015). There are a variety of models of curriculum integration that exist to help practitioners 

understand and implement curriculum integration in their classrooms.  

Models of curriculum integration 

One model for curriculum integration (Vars, 1991) offers teachers three options for combining 

different disciplines, namely, correlation, fusion, and core curriculum. ‘Correlation’ is the simplest, 

most basic form of integration, where different subject teachers combine two or more disciplines in 

one topic simultaneously. Correlation is used to reveal connections between disciplines within a 

single subject area. For example, the mathematical concept of geometric figures might require 

discussions about strength of structures and symmetry, drawn from the subject of science. Taking 

correlation a step further, Vars (1991) describes ‘fusion’ as an approach that involves merging the 

content of two or more disciplines to create an entirely new discipline. For example, a unit of study 

about water may be designed by fusing concepts from mathematics, science, and geography. The 

most advanced and complex approach in Vars’ model is the ‘core curriculum,’ which takes on a 

student-centered approach to curriculum integration. In this approach, the integrated curriculum’s 

nature and criteria are determined based on the needs and problems of the students. Teachers group 

students’ needs and problems into clusters and then design integrated study/content units that 

integrate skills and subject matter content from any pertinent subject, suited to the original 

problem/need. As a result of this approach, the criteria for integration are to determine what subjects 

and forms of knowledge are essential to explore and solve the problem at hand.  

In contrast to Vars’ model, Fogarty’s (1991) model proposes five approaches to integrate curriculum 

across disciplines: sequenced, shared, webbed, threaded, and integrated. Somewhat similar to Vars’ 

‘correlation’, the ‘sequenced’ approach involves teaching relevant topics from different disciplines 

independently. These topics are sequenced to provide a framework for broad concepts and to facilitate 

the transfer of learning across content areas. The ‘shared’ approach focuses on the shared concepts, 

ideas, and skills as knowledge of two disciplines connected through a common topic. These common 

topics promote shared instructional experiences among learners, allowing them to make connections 

across the two integrated disciplines. Moving beyond two disciplines, the ‘webbed’ approach 

employs a thematic approach where three or more independently taught disciplines are combined 

such that they lean toward a common theme as a base for instruction. This approach helps learners to 

make sense of the topic under study by drawing knowledge from multiple disciplines. As the name 
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suggests, the ‘threaded’ approach involves integrating the disciplines together through the common 

thread of a chosen skill. In this approach, the content of the integrated disciplines is only a tool for 

learners’ skill development, such as social, thinking, technology, and study skills. Like the ‘core 

curriculum’ approach by Vars, Fogarty’s threaded approach is student-centered. However, in contrast 

to students’ needs and problems, the nature and criteria of curriculum integration in the threaded 

approach depends on the selected students’ skills. In this approach, the combination of disciplines is 

established by what skills the students need to develop. Lastly, in the ‘integrated’ approach, a 

common goal or theme, which requires knowledge of more than two disciplines, is proposed. In this 

approach, the overlapping aspects of the included disciplines encourage learners to see the 

interconnectedness and interrelationships between the disciplines. Graphical representations of each 

approach in Fogarty’s model are given in Table 1.  

Table 1: Fogarty’s model of curriculum integration across disciplines, adapted from Fogarty (1991) 

Approach Sequenced Shared Webbed Threaded Integrated 

Representation      

Another model of curriculum integration was later presented by Drake & Burns (2004), which greatly 

overlaps with some approaches of Fogarty (1991) and Vars (1991), see Figure 1. According to this 

model, teachers can integrate curriculum in three ways, starting from a ‘multidisciplinary’ approach, 

which is at the lowest level of integration, to ‘interdisciplinary’ and finally a ‘transdisciplinary’ 

approach, which is at the highest level of integration. Similar to the correlation and webbed approaches 

of Vars and Fogarty respectively, the approach of multidisciplinary integration involves organizing the 

standards from multiple disciplines. These disciplines are combined such that there exist 

interconnections between the disciplines despite teaching them separately. In contrast to the 

multidisciplinary approach, in the ‘interdisciplinary’ approach, teachers emphasize such concepts and 

skills that are common to two or more disciplines. Thus, the interdisciplinary approach resembles the 

‘integrated’ approach of Fogarty’s model as both involve combining disciplines based on their common 

characteristics. Irrespective of the disciplinary and/or interdisciplinary skills and concepts, the 

‘transdisciplinary’ approach focuses on the development of innovative solutions to real life problems 

by using concepts and skills of all the disciplines. This approach greatly resembles Vars’ core 

curriculum approach as both take the ‘problem-centered’ approach as a basis of combining disciplines. 

Interdisciplinary mathematics education 

IdME occurs when an ‘interdisciplinary’ approach to curriculum integration is used to teach 

mathematics (Chao-Fernández et al., 2019). In IdME, mathematics is often combined with science, 

arts, and/or languages (Lovemore et al., 2021; Serrano Corkin et al., 2020). The interdisciplinary 

integration of mathematics presents mathematics in a wider context (Chi, 2021); combined with real-

world knowledge to foster problem solving skills and inquiry among students (Williams et al., 2016).  
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Figure 1: Venn diagram showing relations and interconnections between Fogarty (1991), Vars (1991) 

and Drake & Burns (2004) models of curriculum integration 

IdME also develops students’ understanding and sense of how mathematics relates to, and builds on 

the other subjects (Kokko et al., 2015). When students discover these interconnections between 

mathematics and other subjects, their beliefs and attitudes towards mathematics are positively 

transformed (An et al., 2008). As many students find mathematics vague, abstract, and detached from 

reality and real-life situations (Mosvold, 2008), IdME underscores mathematics as an engaging 

discipline, which is inherently present in other disciplines as well as everyday knowledge (Chi, 2021). 

Given the many benefits of IdME, most teachers have positive perceptions towards using 

interdisciplinary approach of curriculum integration in their classrooms (Ozturk & Erden, 2011; Saleh 

& Shaker, 2021).   

Project-based learning within IdME 

There are multiple approaches that can be used by teachers to implement IdME in the classroom. A 

common and widely used approach for IdME is project-based learning (PBL) (Chi, 2021). PBL is an 

instructional method that allows students to engage meaningfully with interdisciplinary content at a 

deeper level (Condliffe, 2017). In PBL, students investigate challenging questions or issues of 

personal interest in authentic and real-life settings (Aydın-Günbatar, 2020; Bell, 2010; Laur, 2013; 

Lin et al., 2015; Virtue et al., 2019). When students apply mathematics knowledge to real-life 

situations, their mathematical understanding is greatly improved (Boaler, 1997; Holmes & Hwang, 

2016). PBL helps students in “establishing conceptual associations between the learnt knowledge” 

(Demı̇Rel & Coskun, 2010, p. 48) and hence, improves their academic achievement in mathematics 

(Gürgı̇l & Çetı̇n, 2018). Indeed, a study by Holmes and Hwang (2016) found that students who 

initially had little belief in their mathematics skills “expressed mastery or learning goals” as a result 

of engaging with PBL (p. 459). Students “show stronger motivation than in relation to more 

traditional didactic models” (Ghisla et al., 2010, p. 10) when learning mathematics in an 

interdisciplinary, project-based format. 

The Lifestyles Project: Conception and design 

In this section, we present an example of an IdME project, which took place in a Secondary 2 

mathematics classroom at a Québec school.  
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Project background 

The IdME project was developed within a context of a research-practice partnership with a small, 

independent girls’ school in Québec, Canada. The Grade 8 mathematics teacher in the school, 

Stephanie (all names are pseudonyms), was keen to implement the interdisciplinary approach (Drake 

& Burns, 2004), particularly IdME, into her mathematics course using PBL as a means to achieving 

this goal. As such, she developed the “Lifestyles Project,” which was designed in collaboration with 

teachers from other subject areas (science, English language arts (ELA), and visual arts).  

The overarching objective of this project was to implement IdME as a curriculum integration 

approach such that it would:  

a) engage students in mathematics education by discovering its connections with other 

disciplines and everyday knowledge (An et al., 2016; Chi, 2021); 

b) align with the Québec’s Secondary 2 mathematics curriculum (Québec Ministry of Education, 

2007d); and 

c) help students develop the skills aligned in Québec’s Broad Areas of Learning (Québec 

Ministry of Education, 2007c) and Cross-Curricular Competencies (Québec Ministry of 

Education, 2007b). 

Project schedule & set-up 

To achieve the project objectives, the Lifestyles Project was sub-divided into three consecutive 

assignments: the Hobbies, Careers and, Bedroom Design assignments, see Table 2. The project 

schedule was set up such that all assignments were purposefully interdisciplinary and interspersed in 

the mathematics course throughout the year, each spanning 2–3 weeks in length. 

Hobby assignment 

The first assignment of the Lifestyles Project was the Hobby assignment, which was comprised of 

four classroom sessions and involved the integration of the mathematics and science courses. 

Stephanie (the mathematics teacher and project lead) and Melinda (the science teacher) collaborated 

to design the Hobby assignment. The goal of the Hobby assignment was for students to explore at 

least one science and one mathematics concept from their chosen hobby and then share their work.  

Session 1: In the first session, with the support of Melinda, Stephanie introduced the Hobby 

assignment description and grading rubric to the students for their review. Then, they facilitated a 

whole-class discussion where students collectively defined and explained what constitutes a ‘hobby’ 

while discussing various examples of hobbies based on their real-life experiences and interactions. 

After establishing a base knowledge of what constitutes a hobby, each student selected a hobby of 

personal interest to explore and research the mathematics and science inherent in the activity. 

Students chose a wide range of hobbies, such as sewing, swimming, horseback riding and cooking.  
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Table 2: Summary of Lifestyles Project assignments 

 Hobby Assignment Careers Assignment 
Bedroom Design 

Assignment 

# Classroom 

Sessions 
4 8 5 

Integrated 

Subjects 
Mathematics & Science 

Mathematics & English 

Language Arts (ELA) 
Mathematics & Arts 

Collaborating 

Teachers 
Stephanie and Melinda Stephanie and Melissa Stephanie and Penny 

Goal 

Explore at least 1 

science and 1 

mathematics concepts in 

the chosen hobby and 

share the final work 

Choose a potential career 

and calculate the net and 

gross annual salary 

considering the tax 

deductions 

Design a scaled, 3D model 

of the bedroom of your 

dream apartment while 

taking into consideration 

certain constraints 

Key Topics 

- Definition and 

description of hobby 

- Process of conducting 

and referencing an 

authentic and credible 

online research 

- Discovering science 

and mathematics in a 

hobby 

- Mining potential of 

aptitude tests for careers 

choice 

- To search and interpret 

online information related 

to job, salary and tax 

deductions of the careers 

- Analysis of a pay 

statement based on given 

salary scale 

- Calculating the pay 

deductions and bi-weekly, 

monthly, and annual gross 

and net salary 

- Designing a blueprint or 

floor plan of any room 

- Graphing scaled top-view 

drawings 

- Calculation of a total 

surface area of any 3D 

design 

- Use of low-relief 

cardboard technique and 

decoration using patterned 

paper 

- Designing based on 

elements and principles of 

art 

Session 2: In the next session, Melinda discussed the topic of conducting an online authentic and 

credible research as students had limited exposure of, and experience with the online research. In this 

discussion, Melinda facilitated the dialogue on ‘authenticity and credibility’ of online information 

and citation of online sources, see Figure 2a. This discussion provided students an opportunity to both 

develop their research skills as well as prepare for the research component of the Hobby assignment. 

Then, students started working on their individual assignments in the last half of this session (Figure 

2b) as Stephanie and Melinda facilitated them through their individual work of online research and 

responded to their queries. 



 52 

 

Figure 2: a) Melinda leading a discussion on credibility of online sources in the first half of session; b) 

students doing their individual work on the Hobby assignment with support from Melinda and 

Stephanie 

Session 3: In the third session of the Hobby assignment, students continued to work on their 

individual assignments. Stephanie and Melinda reviewed and restated assignment expectations and 

rubrics to support students’ success. 

Session 4: In the last session, students submitted their work in multi-modal formats including write-

ups, video essays, and presentations, see Figure 3. The students were required to share: 1) at least one 

science and one mathematics concept from their hobby; 2) the rationale behind why they chose a 

hobby; and 3) the list of references they used to carry out the assignment. Some students also opted 

to share their final product with the whole class.  

 

Figure 3: a) Screenshot from the video submitted by Secondary 2 student Raza presenting the 

scientific aspects of cooking; b) Cymbi presenting the science and mathematics concepts in ballet 

Careers assignment 

The second assignment of the Lifestyles Project was the Careers assignment. For this assignment, 

Stephanie collaborated with Melissa (the ELA teacher). This assignment was specifically designed 

so that the students can go beyond their hobby and start thinking about translating their interests into 

potential careers. The scope of this assignment was much broader and involved eight classroom 

sessions, i.e., twice as many classroom sessions as the Hobby assignment. 

Session 1: In the first session, students took aptitude tests, shared their top results on a digital 

interactive whiteboard (Jamboard) and selected their careers. Students could either pick a career from 

the results of their aptitude test or choose a different career that matched their interests and hobbies.  



 53 

Session 2: During the second session, students were required to find three jobs within Canada based 

on their career choice. Using a template designed collaboratively by Stephanie and Melissa, students 

added the job details to a ‘job notesheet’. These details included the job description and qualifications, 

reasons the students were interested in these three jobs and APA citations for the job sources. To 

promote peer collaboration among students, students were asked to post helpful websites on a 

Jamboard, see Figure 4.   

 

Figure 4: Screenshot of the websites shared by students to find jobs in Canada 

Session 3: During the third session of the Careers assignment, students continued to research jobs 

and complete the job notesheet. The focus of this session was to help students correctly complete the 

notesheet while adding APA citation properly using BibMe, an online bibliography generator.  

Session 4: While working on their individual job notesheet, see Figure 5, students engaged in multiple 

reflection discussions in this session of the Careers assignment. In these discussions, students talked about 

the process of looking for a job, their personal job preferences, interests, and lifestyles. The students 

continued to work on their individual assignments while engaging in these whole-class discussions. 

 

Figure 5: Screenshot from Lassa’s job notesheet 

Session 5: The fifth session of Careers assignment started with a ‘Mr. Needy salary activity’. In this 

activity, students had to analyze a pay statement by using a real-life context of a Québec teacher, 

referred to as Mr. Needy. To complete this activity, students used Classkick, an online software, 

which allowed students to get help from their peers and teachers as they needed, see Figure 6. Students 

were given the salary scale of a general Québec teacher as well as the pay statement of Mr. Needy 

and asked to interpret this information. Next, students answered questions regarding pay deductions 
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and bi-weekly, monthly, and annual salary calculations. Lastly, students researched different terms 

associated with salary and tax deductions, such as “QPIP” (Québec parental insurance plan) and 

“QST” (Québec sales tax) and identify if these deductions are common to jobs in Québec, Canada 

and particularly Mr. Needy’s salary statement. First, students did mathematics calculations, followed 

by research and writing (using templates developed in collaboration with ELA) in the second half. 

Besides individual work, students participated in whole-class discussions about gross versus net 

salaries, different pay deductions, and how they differ from province to province in Canada. 

 

Figure 6: a) Stephanie facilitating the students while they are completing Mr. Needy assignment on 

Classkick; b) group of Secondary 2 students working individually on the same task 

Session 6: In the sixth session, students completed notesheets about salary and tax related to their 

chosen jobs. These notesheets required students to apply concepts they learned in the Mr. Needy salary 

activity. As in a previous session, a Jamboard was created for students to share helpful websites.  

Session 7: In this session, students worked on the final task of this assignment, which required them 

to write a report to share their learning. In this report, students explained why they chose their careers, 

what jobs they chose and why, as well as calculations of their gross and net annual salaries.  

Session 8: Students continued working on the report, Figure 7, in the last session of Career 

assignment. In this session, Stephanie reminded students to demonstrate and explain all the necessary 

calculations, and also explain the ‘mathematics’ behind them. Furthermore, students were asked to 

add APA citations of at least five websites they used in their report. 

 

Figure 7: Screenshot from the final report where Cymbi is explaining the working behind the salary 

calculations of her beauty chemist job 
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Bedroom design assignment 

The final component of the Lifestyles Project was the Bedroom Design assignment. In collaboration 

with Penny (the arts teacher), the Bedroom Design assignment consisted of five classroom sessions. 

For this assignment, students had to design a scaled 3D model of the bedroom of their dream 

apartment while taking into consideration certain constraints, see Table 3.  

Session 1: Like the Hobby and Careers assignments, Stephanie and Penny started the first session of 

the Bedroom Design assignment with a brief overview of the assignment description and rubric. Next, 

Stephanie guided the students through the process of designing a top-view drawing of a 2D blueprint 

or floor plan. Students had to draw a scaled drawing of their proposed bedroom design on graph paper 

once they learned the basics of top-view drawing. 

Session 2: In this session, Penny taught the students how to glue and peel cardboard to make a 3D 

model of their bedroom using the previously designed blueprint. By the end of this session, students 

started designing their 3D bedrooms, see Figure 8. 

Table 3: Constraints of the bedroom design assignment based on mathematics and arts 

Mathematics Constraints Arts Constraints 

Use at least three (or more) pieces of furniture in 

the shapes of regular solids or regular 

decomposable solids. 

Create bedroom sculptures using low relief cardboard 

techniques (inspired by Louise Nevelson's work) 

Calculate the total surface area of the bedroom by 

adding the surface area of each furniture piece as 

well as the surface area of the bedroom floor base. 

Make patterned paper for decorating the floor, walls, 

and surfaces of furniture pieces, use multiple non-

brush tools to create a painted wallpaper inspired by 

Dominique Petrin's artwork 

 Ensure that elements and principles of art such as 

balance, variety, shape, pattern and composition are 

considered when designing and decorating the 

bedroom. 

  

 

Figure 8: Secondary 2 students designing 3D, scaled models of their bedroom designs with Penny's 

assistance 
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Session 3: Students continued working on their bedroom designs in the third session. For the surface 

area calculations, Stephanie provided a notesheet for students to use.  

Session 4: In this session, students continued to work on the assignment. Stephanie and Penny responded 

to students’ questions and provided feedback to students as they made progress on their designs. 

Session 5: After making the final adjustments and modifications in their designs, students presented 

their work in this last session, see Figure 9. Students were asked to adjust their 2D top-view drawings 

based on their final 3D products.  

 

Figure 9: Examples of students’ work from the Bedroom Design assignment 

Student assessment in the lifestyles project 

Each assignment in the Lifestyles Project was graded using rubrics, see Figure 10. The rubrics were 

designed by the two collaborating teachers of the integrated subjects. For example, the rubric for the 

Bedroom Design assignment (integration of mathematics and arts) was designed and graded by both 

Stephanie (the mathematics teacher) and Penny (the arts teacher). Generally, teachers introduced each 

assignment by discussing and explaining the rubric criteria. Whenever possible, at the end of each 

assignment, collaborating teachers met to review the rubrics and discuss students’ performance.  

Rubrics included both ‘shared’ and ‘independent’ criteria related to the two subjects that were 

combined (e.g., for the Hobbies assignment, mathematics, and science). Shared criteria included the 

general aspects of the assignment, such as the product, quality of work, and research. For each subject 

that was integrated within the respective assignment, the independent criteria included separate 

sections. As an example, the rubric for the Bedroom Design assignment included mathematics criteria 

such as surface area calculation and top view drawing, as well as arts criteria such as evidence of 

using low relief technique and elements.  

 

Figure 10: Graded rubric where students' Bedroom Design assignment is assessed on shared criteria 
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Conclusion 

In this descriptive paper, we presented the Lifestyles Project, an example IdME project from a Secondary 

2 mathematics classroom at a Québec school. This project was designed using interdisciplinary approach 

by Drake and Burns (2004) and implemented using a PBL approach (Chi, 2021).  

The disciplines of science, ELA, and the arts were combined with mathematics in an interdisciplinary, 

project-based format. Students first participated in the Hobby assignment where they chose a hobby 

of personal interest and identified and explored science and mathematics concepts associated with 

the hobby. In the Career assignment, students selected a future career, found a job in this career, and 

calculated the salary that they would receive (given required tax deductions). Finally, in the Bedroom 

assignment, students designed a 3D, scaled model of the bedroom of their dream apartment 

considering arts and mathematics constraints. Each assignment involved collaboration between the 

mathematics teacher and a colleague from another discipline (science, ELA, the arts). Rubrics were 

used for students’ performance assessment, that aligned well with the interdisciplinary, project-based 

nature of these assignments. 

We believe that the comprehensive example of the Lifestyles Project serves as valuable addition to 

the IdME literature and will help novice secondary teachers of Québec to adopt IdME in their 

classrooms. As the Lifestyles Project was particularly aligned with Québec’s Secondary 2 

mathematics curriculum, teachers in other contexts may need to make adjustments to make it suit 

their needs. Despite this, we still hope that the Lifestyles Project serves as an inspiration for those 

hoping to implement IdME in their classrooms. Learning from the examples in our paper, we 

encourage researchers and educators alike to further examine the ways to develop IdME projects and 

transform mathematics instruction to make it engaging, meaningful, and relevant for students.  
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Preterm children’s negotiation of mathematical identity in the figured 

worlds of home and the mathematics classroom 

Rebecca Pearce1 

 

Identity research in mathematics education has increasingly been used to examine individuals’ 

mathematics learning and experiences with mathematics in a holistic and agential way. My study 

answers the research question “how do children born extremely preterm negotiate their 

mathematical identities, and what insights may this identity negotiation provide about their 

mathematical learning and doing?" This paper will discuss exploratory findings from interviews with 

a secondary school student who was born extremely preterm, his parents and teacher, as part of my 

ongoing doctoral research. Within a case study methodology, I draw on a framework of figured 

worlds to examine student identity work and demonstrate that this identifying is complex and 

informed by the figured worlds of home, school, and prematurity.   

Keywords: Mathematics, prematurity, identity, figured worlds.  

 

Introduction and background 

Preterm or preterm children, as a group, experience more difficulties with mathematics than term-

born peers. For example, up to 50% of extremely preterm children, born at less than 28 weeks 

gestational age, show serious impairments in mathematics (Johnson et al., 2009) likely due to changes 

in brain circuitry impacted by lower gestational age (Klein et al., 2018). This is significant for many 

reasons. For example, there is a link between mathematics scores in early childhood and post-

secondary school attendance and adult wealth in preterm children (Basten et al., 2015). 

Current research studies into mathematical outcomes of preterm children employ the statistical 

analyses of standardized tests, checklists, and report scales, or the comparison of achievement levels 

of preterm children with term-born peers. While mathematics is important in both education and 

society, mathematics learning and achievement are complex and related to more than just cognitive 

ability. Current large-scale quantitative research obscures the individual mathematics experiences of 

preterm children and does not consider children’s or parents’ perspectives about learning and 

achievement. This research is decontextualized, in that it fails to consider children’s family or school 

situations. Finally, the research is deficit-based in that it focuses on what preterm children can’t do 

or how they are different from term-born peers, rather than examining their strengths or what they 

can do and be. 

To examine mathematics learning and doing in preterm children in a different way, I have chosen to 

use identity as a lens to examine participants’ experiences with mathematics. Research in 

mathematics education has increasingly looked at the concept of identity to understand the 

relationships that students have with mathematics (Darragh, 2013). This research “seeks to 

understand how individuals experience, perceive, and position themselves as learners and doers of 
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mathematics” (Goldstein, 2018, p. 146) and how other people position and impose identities upon the 

individual. Examining ways in which students think about themselves in relation to mathematics can 

provide a more holistic measurement that goes beyond the analysis of students’ mathematical 

reasoning and what they can and cannot do (Cobb et al., 2009) and focuses on the whole person rather 

than reducing learning to factors such as cognition or achievement (Darragh, 2013; Fellus, 2019). 

Since identity is related to persistence, proficiency, and learning in the field of mathematics (Bishop, 

2012; Cobb & Hodge, 2010), it can help researchers theorize about mathematical learning and 

examine and understand people’s relationships with mathematics (Darragh, 2016; Fellus, 2019). The 

concept of identity has been linked to learning through the adoption of socio-cultural theories, with 

the understanding that learning happens through social participation and the process of identity 

development (Esmonde, 2009). Mathematics identity as a construct can allow for self-authoring and 

agency, incorporates positioning and the impact of significant others, can provide insights about 

learning without using discourses of cognitive deficit, and can be used to examine participant 

experiences in relation to their social contexts (Fellus, 2019). In summary, the study of students’ 

mathematics identities can allow us to access ways in which students see themselves and how they 

are viewed by others as members of a mathematics community (Anderson, 2007). 

Mathematics identity research has been conducted with populations such as deaf and hard-of-hearing 

students (Goldstein, 2018), students with learning disabilities (Ben-Yehuda et al., 2005; Lambert, 

2017), and those who are struggling in mathematics (Horn, 2008). Preterm children and the complicated 

ways in which their mathematics identities may be defined by existing, deficit-based research, by others, 

and by themselves make them a unique and unexplored group of learners. Preterm children represent a 

heterogeneous group whose differences may distinguish them from other mathematics learners. They 

have extensive and complex medical histories, which may lead to individual and family stress and 

trauma. They may also experience cognitive, attention, social, and emotional difficulties as a result of 

their preterm birth (Johnson et al., 2018) that may impact upon how they are identified by parents, 

educational professionals, and themselves as mathematics learners and doers.  

Research question and objectives 

My overarching research question is how do children born extremely preterm negotiate their 

mathematical identities, and what insights may this identity negotiation provide about their 

mathematical learning and doing? There are four objectives to this research: To explore how 

secondary school students who were born extremely preterm negotiate their mathematics identities; 

to describe the contexts of home and the mathematics classroom in which these students engage in 

identity work; to analyze how positioning by others within the worlds of home and school 

influences/mediates mathematics identity work; and to examine how participants’ mathematics 

identity negotiation and learning may be related.  

Theoretical framing 

I have chosen to use the cultural model of figured worlds (Holland et al., 1998) as a framework to 

examine participants’ identifying as mathematics learners. This framework takes up the view of 

learning as social, situated and involving a dialogic process of identity formation, what Holland and 

her colleagues refer to as “identity in practice” (p. 271). In this framing, identity is defined as how 

participants view themselves and their relationship to mathematics and how they are seen by others 
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through their position and encounters in the social world. Identity is a process rather than a thing; it 

is something that is done or negotiated rather than what someone is.  

Figured worlds, positionality, and space of authoring are different contexts of activity in which 

identities in practice are negotiated. Figured worlds are “socially and culturally constructed realm(s) 

of interpretation in which particular characteristics and actors are recognized, significance is assigned 

to certain acts, and particular outcomes are valued over others” (Holland et al., 1998, p. 52). They are 

“frames of meaning” (Holland et al., 1992, p. 271) or frames of understanding. In the context of my 

study, figured worlds contain agents that shape social meanings and structures (e.g., parents, teachers, 

students), acts, which include mathematics teaching and learning, and forces, which are social 

categories based on conventions such as intelligence and motivation (Horn, 2008).  

Positionality refers to the way in which people, in the case of my research, extremely preterm 

mathematics learners, fit within their figured worlds. Positions are shaped by social and cultural 

norms, expectations, and dynamics within figured worlds, so positionality carries dimensions of rank, 

power, and status (Holland et al., 1998). There are two ways that I conceptualize positionality in my 

research, how certain students position themselves as mathematics learners and doers and how they 

are positioned by others, so how students describe themselves within the contexts of the figured 

worlds in which they live and how they are described by different actors (e.g., parents, teachers, 

classmates) in those worlds. There is a link between figured worlds, positionality, and identity in that 

positions are shaped by figured worlds, and in turn this positionality contributes to identity work and 

helps shaped identity. 

Individuals must negotiate their identities in a “space of authoring” (Holland et al., 1998, p. 63) which 

refers to the ways in which individuals take up or reject positions within their figured worlds. The 

space of authoring is a Bakhtinian concept in that it is “organized around the conflictual, continuing 

dialogic of an inner speech where active identities are ever-forming” (Holland et al., 1998, p. 169). 

Because individuals can adopt, reframe, or resist the different positions, values, and narratives that 

are offered to them within a figured world through this space of authoring, identity construction is a 

continuous, active and agential process (Sabbah & Heyd-Metzuyanim, 2021). Hull and Greeno 

(2006) liken the space of authoring to “voice” or “the ways in which individuals present and represent 

themselves to others and to themselves, thereby authoring and co-authoring their identities in the 

social worlds in which they participate” (p. 78). The key is that individuals can only answer to the 

positions and resources that are available to them, for example being smart (Hatt, 2012) or a low-

level student (Luttrell & Parker, 2001). Therefore, an individual’s identity in practice is developed 

through negotiation between available positions and how these positions are taken up or not. 

Mathematics classrooms have been researched as figured worlds with specific learning environments 

and cultures (Darragh, 2013), practices, activities, and available ways of interacting (Boaler & 

Greeno, 2000) roles, identities, and socially constructed images of mathematics (Takeuchi & Liu, 

2021), and curricula organized and represented in different ways (Horn, 2008). Classrooms are 

shaped and regulated by “visible and tangible things like course objectives, classroom rules, and 

grades, as well as factors that remain beneath the surface” (Caraballo, 2012, p. 53) and the way that 

the mathematics classroom is figured influences students’ relationships with mathematics (Takeuchi 

& Ling, 2013). Individual families can also represent figured worlds (Cogan, 2016) with different 

agents, values and experiences with mathematics and prematurity. Families have different social and 
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cultural expectations and definitions of success in school mathematics that can influence student 

behaviours, attitudes, and educational mobility (Zuckerman & Lo, 2021). In the context of my 

research, figured worlds contain agents who carry out tasks that shape social meanings and structures 

(e.g., parents, teachers, students). Figured worlds contain acts or actions, which include mathematics 

teaching and learning, and forces, which are social categories or expectations based on conventions 

such as intelligence and motivation. 

Figured worlds has been used in different contexts as a framework to examine identity formation or 

identity work, for example with teachers (Avraamidou, 2019), Swedish construction engineering 

students (Gonsalves et al., 2019), high school mathematics students (Jones & Seilhamer, 2020), and 

science students (Wade-Jaimes & Schwartz, 2019), and as an aspect in a theory-driven literature 

review on identity in mathematics education (Fellus, 2019). Fellus (2019) used the ADAS model to 

classify research on identity in mathematics education in four different but interrelated dimensions 

including mathematics-related autobiographical identity, discoursal identity, authorial identity, and 

socioculturally available mathematics identities. While Holland et al. (1998) focus attention on 

contexts of learning through acts of apprenticeship, for example, Fellus (2019) turns attention to a 

way to understanding mathematical identity in a broader sense, which includes one's personal 

experiences with mathematics, opportunities one receives to develop an authorial voice in 

mathematics, how one is talked to and about as a learner of mathematics, and what available identities 

one can identify with vicariously.  

Methodology and methods 

I used a multiple, comparative case study methodology (Stake, 1995) for my research. I chose this 

methodology to support a deep exploration of each individual participant, through detailed 

descriptions of case settings and situations and the use of multiple forms of data. It has also allowed 

me to examine similarities, differences, or patterns across cases. Participants were recruited through 

the pediatric follow-up clinic at a local hospital as well as through a posting on the Préma-Québec 

website. Inclusion criteria included children who were in secondary school during the 2021-2022 

school year, who were born extremely preterm at a gestational age of less than 28 weeks, and whose 

parents had identified their children as having difficulties with mathematics in school. Four 

participants of different ages and educational backgrounds, five parents (four mothers and one father), 

and three teachers took part in this study. Ethics approval was obtained from McGill University, the 

hospital where participants were recruited, as well as the schools and/or school boards attended by 

student participants.  

My main method of data collection is a series of semi-structured interviews, lasting between 30–90 

minutes and conducted remotely over Zoom. Data collection started in the fall of 2021 and finished 

in July 2022. I have three interviews for all participants, parents, and teachers, except for one teacher 

who I interviewed only once, for a total of approximately 36 hours of interview time. I also have 

report cards or report card results from each student, IEPs for two students, and one 

psychoeducational assessment as artifacts. All identifying information from transcripts and 

documents, such as names of siblings and school names and locations, was anonymized. Pseudonyms 

were either chosen by or assigned to participants, based on their request.   

I used a hybrid process of inductive and deductive data analysis (Fereday & Muir-Cochrane, 2006) 

to both interpret themes emerging from the data and to develop themes based on the model of figured 
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worlds, participants’ identity negotiation, and positioning by parents and teachers (Fellus, 2019). 

Interview transcripts were used to assemble background information for each participant (e.g., 

prematurity history, family background, participants’ lives and interests). I looked for excerpts from 

participants, parents, and teachers that help explain and describe the figured world of home, 

prematurity, and the mathematics classroom that indicate how parents and teachers position students. 

I looked for interview excerpts or narratives where students author themselves as learners and doers 

of mathematics. I identified emergent themes that explore links between students’ negotiation of 

identity or identity work, how they are positioned in different figured worlds, and how this might 

relate to their learning. These data are being compiled to develop case summaries for each participant 

and to develop themes that may be consistent across cases. This analysis is ongoing as part of my 

doctoral thesis work. The following section will present case information and analysis about one 

participant, William.  

Case study: William 

Background and preterm birth   

William lives with his mother Christine and twin brother Scott. During our interviews he was in 

secondary 2 at a public English secondary school with about 1100 students, about 200 in secondary 

2. He was 13 years old when our interviews started and turned 14 in 2022. William and Scott were 

born at 25 weeks gestational age. Christine had been on bed rest before she went into labour, and her 

children were delivered by emergency C-section. Christine described the chaos and stress 

surrounding the birth of her children, and after Scott and William were born, it was clear that Scott, 

who was delivered first, was experiencing complications. William spent two months in the NICU 

where he did not have any of the major complications associated with extremely preterm birth, such 

as intraventricular hemorrhage, lung problems, or feeding issues. Scott, however, spent three months 

in the hospital, and at nine months was diagnosed with Cerebral Palsy (CP). Today Scott has spastic 

CP and using Canadian Neonatal Follow-up Network (CNFUN) definitions, would be considered to 

have a severe neurodevelopmental impairment (NDI).  

Early education 

William showed some early minor developmental delays, for example when he started preschool at two 

years old, he was not talking, and it took a long time for him to reach developmental milestones like 

being toilet trained. Christine said that this never stressed her out and that she expected William to be 

delayed developmentally because of his extreme prematurity. William attended a reverse-integration 

program in kindergarten so he could attend a year of school with Scott at his specialized school for 

students with disabilities. Christine attributed this to future difficulties that William experienced when 

he started attending a regular English elementary school starting in grade 1. William was never tested 

for a learning disability or neurodevelopmental disorder like ADHD in elementary school despite his 

teachers suggesting that he be assessed because he was struggling in several subjects, particularly those 

given in French. Christine was adamant that he didn’t have a learning disability and shouldn’t need to 

be tested, put into a category, or given a label to receive support in school. This decision was based on 

her experiences working with students with learning disabilities and her knowledge of the education 

system, and Christine saw William’s elementary teachers as overreacting about what she considered to 

be regular developmental differences in her son. 
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Secondary school 

William was a student ambivalent about school, and said “it’s not like I love school, but it’s not like 

I don’t like it, it’s all right” when asked for his thoughts about going into secondary 3. Christine 

worked as an educational assistant at William’s school. Both she, William’s secondary 2 math teacher 

Josie, and William himself said that he had a small group of friends and was liked by his peers. In 

secondary 2, William’s marks were generally in the high 60s and low 70s, with 80s in courses like 

gym, drama, and ethics. His lowest mark for both terms of the 2021–2022 school year was in 

mathematics, with 63% in term 1 and 65% in term 2. Throughout our interviews, William identified 

his favourite subjects in school as history and English, because they were easier for him to understand. 

He particularly liked English because of the teacher and how she made the material accessible and 

easy to understand for her students. William also said that he thought he was pretty good at writing. 

Christine echoed this, saying that William did well in English despite not liking to read and not being 

a huge reader. Despite her previous assertions that William did not have an attentional or learning 

disability, she suggested that William’s dislike of reading “might be a little bit of an attention 

problem” but that she didn’t investigate this potential difficulty with attention because she “always 

considered it fine” and felt it wasn’t hindering him academically. 

William’s least-favourite classes were mathematics and science because he found them more 

challenging and the material more difficult to understand. Christine noted that William had started to 

experience difficulties in mathematics in grade 6, notably with word problems. That continued into 

secondary school, and in secondary 2 he struggled in mathematics more than she thought he would 

and required extra help. William’s classes at his high school were relatively small, between 19 and 

21 students, but he pointed out several times that his classmates’ bad behaviour impacted on his 

learning, particularly in mathematics, because every class, students would need to be admonished or 

kicked out of class for their misbehaviour.  

The figured world of home 

The main agent in the figured world of William’s home was his mother. According to Christine, 

William’s father was uninvolved in his education but despite this, William’s father was still an 

important figure in his life. William told me that his father was good at mathematics because he used 

to use it for his job building fences, and because of this, “he (his father) just expects everybody to be 

good at it too.” William said his father had higher expectations regarding mathematics than his 

mother, who “works with kids who are not good at mathematics” and is more “understanding where 

I’m coming from.” William also told me that he thought that both of his parents felt that mathematics 

was important for him because he might need it in the future.  

During our first interview Christine told me that she hated mathematics, had a horrible experience in 

mathematics in secondary school, and barely got a passing grade. She plainly said that she did not 

care about William’s achievement in mathematics and did not think it was important for him to do 

well in mathematics if he passes in order to graduate from secondary school. Christine questioned 

why anyone would work hard at mathematics if they didn’t have an interest in it unless it was 

necessary for a future career. Despite these negative discourses about mathematics, Christine told me 

that she tried to help William with his homework when she could and would try to help him study for 

mathematics tests. By the end of the school year, in response to Williams’s new interests in 
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architecture and health sciences, Christine’s beliefs about the importance of mathematics shifted 

considerably.  

Christine:  Well, I go up and down. Like, it’s, I think it’s pretty important. Like yesterday, he 

was saying, he wants to be an architect. So I’m thinking you need to know. You 

need to be on that level, you know, so I don’t know, maybe he’ll continue on with 

it. 

She also said that she hoped that William did not hate mathematics because it would be necessary for 

certain programs, and that she wanted him to know that those programs were achievable for him if 

he got extra help and “pushed” himself. Education was important to Christine, and she wanted 

William to continue in Cégep and university. She told me that William talked about going to 

university, so he envisioned himself pursuing higher education as well. 

Christine’s expectations for William and mathematics were focused more on his effort and how hard 

he worked than his marks in the class. She said she was happy as long as “he tried” and that as long 

as he didn’t fail mathematics, she was fine with however he performed. 

Christine:  Yeah, like I just, because I tell him we’re gonna be happy with high 60s, 70s. So 

you don’t have to worry.  

Christine had set clear expectations for William including going for extra help, not leaving the 

classroom unless he understood everything the teacher was explaining and completing all the review 

packages given to him by his teacher.  

Christine positioned William as a student who needed to work hard in school and said that academics, 

especially mathematics, did not come easily for him. She characterized William as a student who 

could be distracted in class and didn’t necessarily “catch on right away” because he wasn’t always 

listening. There were some inconsistencies in this positioning. Although she said that William was 

“borderline” in mathematics, and that it was “quite difficult for him,” Christine also said that “he’s 

been doing well,” referred to William as “average” in mathematics several times and told me that she 

felt that he was getting more confident and was starting to realize the importance of school, and this 

was reflected in his grades.  

Despite being described by his mother as a student who was good at going for extra help when 

necessary, William was also positioned by Christine as a student whose difficulty in mathematics 

stemmed from his lack of effort. She also said that he procrastinated with mathematics homework, 

especially when he found it difficult, and needed to be pushed to do it. When I asked Christine about 

William’s use of mathematics outside of school, she did not seem concerned about his everyday use 

of mathematics, for example during cooking or baking, and said that he was able to make connections 

between some of the topics he was learning in school and how they could be applied in more 

utilitarian settings.  

The more we spoke, the clearer it became that Christine’s positioning of William as a student and her 

views about his difficulties with mathematics were inexorably linked to his prematurity and to his 

brother’s disabilities. Initially, when I specifically asked Christine whether she thought that William’s 

difficulties in mathematics were related to his preterm birth, she said no and portrayed his struggles 

as similar to those of other students his age. Conversely, when I asked William whether he thought 

being born preterm had an impact on mathematics, he seemed unsure, and it was clear that this was 
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perhaps the first time he had considered this question. First, he said “I don't really know anybody 

who’s, like preterm who does mathematics, but like, I don’t think it had anything to do with that.” 

However, as he thought further, he told me that maybe it might have an impact because extremely 

preterm babies’ brains are not fully developed when they are born, but that he didn’t think it would 

have a drastic impact on mathematics ability.  

Christine said that because she worked with students with attention deficit and global developmental 

delay, in her opinion William didn’t have any signs of a learning disability and she thought that 

William “got out (of his preterm birth) without having any repercussions.” However, during our 

interviews Christine also said William’s elementary school teachers pushed her to get an 

individualized education plan (IEP) for William, and that she knew from her neonatal follow-ups that 

there was a higher likelihood that he could have attention problems or learning difficulties arising 

from his extremely preterm birth. Several times, Christine compared William to his brother Scott to 

explain why she was less concerned about him in school. For example, she said: 

Christine:  Well, I think because I had Scott, high needs, I didn’t I didn’t worry too much about 

William. Although I probably think at some point he was, I worried maybe about 

school, you know, cuz I knew like attention deficit disorder, stuff like that. 

Christine also said that unlike Scott, who has major disabilities, William “looks, normal, he is normal” 

and this might have made teachers forget that he could have some sort of processing difficulty. This 

was another example of Christine seeming to acknowledge the possibility that William’s difficulties 

in mathematics could be due to a subtle attention or processing difficulty or impairment, despite her 

previous assertions to the contrary.  

The figured world of school and the math classroom 

The figured world of William’s Secondary 2 mathematics classroom was described somewhat 

differently by William, Josie (William’s mathematics teacher), and Christine. William’s description 

of a typical mathematics class depicted a traditional class structure correcting the previous days’ 

homework, worksheets, and class work from a worksheet package on whatever topic is being covered 

and completing this work in class or for homework. Most of this work was completed individually, 

though William said that occasionally students were allowed to work with another classmate and very 

occasionally in larger groups, but only when students “were on top of everything” and are ahead of 

the rest of the class. William recognized that he was more productive working by himself because he 

got distracted from the task at hand when working with others. When asked about evaluations in 

mathematics, William only mentioned tests, and said “well it’s not like we’ll go over the answers,” 

only when “the whole class did bad” or when many students had difficulty with a particular question. 

He said that tests were often given back at the end of the class when everyone was packing up, and 

just went into his class binder.  

William often attributed more importance to the behaviour of his classmates in mathematics class, 

rather than the actual mathematical content covered in the class. He said a perfect mathematics class 

would involve changing the seating plan because too much class time was spent trying to get the 

students under control. He said that his class is sometimes behind because the students didn’t respect 

or listen to Josie, “fool around,” and took advantage of her, but also that she didn’t follow through on 
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her word to discipline students when they misbehaved. He thought that Josie’s expectations for her 

students related to behavioural norms in the classroom: 

William:  Well, I expect, I think she expects us to respect the teacher, and respect the 

classroom, as well as like, do our homework is a lot because my class don’t do their 

homework, and so we always have to tackle that at the beginning of class. As well 

as like, study and try and participate so they understand. 

Regarding the mathematics curriculum, William’s perception was that many of the subjects covered 

in Secondary 2 were unnecessary for students to learn and his connection to mathematics as a subject 

seemed limited. He said that a perfect mathematics class would also involve “go(ing) over the 

curriculum that I would have to learn and change that up a bit and take out the stuff we don’t need to 

learn.” He said that Josie never talked about why certain subjects were important to learn, and that 

students in the class never questioned the relevance of the curriculum.  

The academic achievement of the other students in the figured world of his mathematics classroom 

seemed to hold little significance for William. He was unable to identify any students who he 

considered to be good at mathematics. In general, he saw good mathematics students as having “really 

good” grades, studying hard, and modelling good behaviour in the classroom. He said he only 

compared his grades on mathematics evaluations with his friends, so he didn’t know how other 

students were doing; his class seemed like a low-competition environment. Regarding his friends, 

William said “I think we all do the same” in mathematics with marks that are “up and down.” 

Christine had a generally positive view of the support offered to William. She said that teachers, including 

William’s mathematics teacher, always made themselves available during lunch for extra help. William’s 

school had recently started an after-school homework program for science and mathematics, and though 

William did not attend because neither he nor Christine thought it was necessary, the program was there 

if he needed it. Christine thought that the mathematics teachers at William’s school were “pretty good” 

because they were always accessible to students through Google Classroom, and consistently posted extra 

resources online, like videos, for students to look at outside of class.  

Christine also concurred with William that Josie’s class management sometimes left something to be 

desired, however Christine placed far less importance on this than William. She said that Josie talked 

a lot and so students lost their focus and acted out, and that some students didn’t like her as a 

mathematics teacher. However, Christine also said that Josie was completely organized, had her entire 

school year planned, knew the mathematics curriculum very well, and acted as a mentor to the other 

mathematics teachers.  

Josie had been teaching at William’s school for 12 years and had taught mathematics courses from 

secondary 1 to secondary 5. She described the secondary 2 mathematics curriculum as “really heavy” 

and a big jump from the content covered in secondary 1. She said that the main topic was algebra, 

presented in many ways through algebraic expressions, equations, patterns, and a heavy focus on 

geometry and the use of multiple formulas to determine the perimeter, surface area, and volume of 

shapes. These were some of the topics that William identified as being very difficult for him and as 

having little relevance to everyday life.  

Josie’s description of her teaching style and a typical 50-minute mathematics class was in alignment 

with William’s characterization. Josie said she didn’t use a textbook but rather put together her own 
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resources, mixing and matching from different sources, and provided students with paper packages 

of work (also posted on Google Classroom), which she described as “a little bit old school.” Josie 

explained that a typical mathematics class would start with going over homework from the previous 

class and discussing questions that students found challenging. Then she would cover a new topic for 

about 20 minutes, and finish with practice examples and then homework. Most of the work is 

individual seat work except for the occasional review package that students were allowed to complete 

in small groups. Josie considered herself a strict teacher who wanted quiet when she was teaching 

and expected students to be quiet and listening to her when she talked, which contrasts with William’s 

perception of his mathematics class as a place where many students were not focused or listening. 

Josie described an evaluation system that was based on chapter quizzes, tests, and assignments, some 

of which students were allowed to work on at home over a period of several days or a week. She 

described a class environment in which she tried to support students as much as possible and gave 

them multiple opportunities to succeed, for example helping them with memory aids for tests and 

exams and answering questions over email or Zoom outside of school hours. All students in her class 

were allowed extra time during lunch to complete summative evaluations because she “wanted to 

know what they know” without the evaluation being a race. 

Josie’s expectations for her mathematics students centered on practice, effort, and perseverance. Josie 

said she expected her students to “put their all into it,” and that students need to engage in mathematics 

and not just “coast,” and that “it’s not good enough for, just to show up in my class.” Josie felt strongly 

that work ethic and hard work are what distinguishes students in mathematics and that hard work has a 

major contribution to student success. When asked to describe her best mathematics student, Josie said: 

Josie:  I don’t look necessarily for the best mark-wise mathematics student, but again, I'm 

going towards work ethic and maybe that’s where I put my emphasis on. I don’t 

even know who I have as a best student. 

Josie also spoke about the importance of struggle in mathematics, and how many students thought 

they aren’t good enough because they struggle “but struggling is part of the process. And that's what 

makes you good is that struggle.” Josie gave her students about 30 minutes of mathematics homework 

every night, each day, because she felt that students didn’t practice mathematics enough and that “if 

you don’t practice it, you’re not going to get it.” She constantly checked homework and called the 

parents of students who fail to regularly do their work. She said that “mathematics is practice and 

weaker students don’t, don’t get that practice in.” Similarly, Josie explained that she didn’t think all 

students can get 80s or 90s in mathematics and that some students have more of an aptitude for 

mathematics, but that “the difference between an enriched student who's good in mathematics and 

the regular students is their perseverance.” 

Josie told contrasting stories about William’s hard work in mathematics class and his weak academic 

performance on evaluations, a distinction that is echoed by William in his identification as a 

mathematics student. William was positioned by Josie as a borderline student whose marks are very 

up and down, depending on the topic, but whose “hard work and his ethic and whatnot, is going to 

carry him through whatever he wants to do.” With respect to specific topics, algebra was difficult for 

William during the first term. Despite Josie giving multiple small tests on the same subject and not 

counting lower marks if students did better on subsequent tests, William’s marks in algebra were in 

the 50s. Josie said that his “reasoning and mathematics sense doesn’t seem to be there” and that he 
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had difficulty with multi-step word problems, not always knowing how to approach the question and 

where to start mathematically. He also had difficulty knowing which formulas to use to find the 

surface area and volume of solids. Although Josie said she didn’t think that William would be 

successful in the advanced Secondary 4 and 5 mathematics courses needed to pursue certain programs 

in Cégep, she also made it clear that she tried not to “write off” students because it is impossible to 

predict how students will end up using mathematics in their future careers. 

Although his marks were borderline, Josie praised William’s organization, independence, and effort. 

She said he always checked her Google Classroom page to stay up to date, regularly attended extra 

availabilities, and showed agency in asking for help when he needed it because “he wants to get it, 

he wants to be able to go home and do his homework.” Josie said she never got the idea that William 

didn’t like mathematics and that his hard work and attitude were noteworthy. Unlike Christine, who 

said that William could get easily distracted in class and sometimes had trouble paying attention, 

Josie described William as a model student who settled down to do his work, was independent in 

class, but wasn’t shy to raise his hand when he had a question. She characterized him as being well-

liked and having a good support base of friends that he could work with on mathematics during recess 

or at lunch. Finally, like Christine, Josie indicated that she didn’t see William’s challenges in 

mathematics as being very different from other students, saying “he’s not strong in mathematics, but 

he’s also not the weakest neither.” She confided that she found the level of mathematics more difficult 

than when she or her own children attended secondary school, so mathematics difficulties were 

common among students.  

William’s mathematics identity work 

Throughout our interviews, I tried to ask William questions that would help me gain insight into his 

identity in practice (Holland et al., 1998) and how he performed an identity as a mathematics student. 

Three interrelated themes emerged around William’s positionality as a mathematics student and his 

understanding of how this relates to both behaviour and academic performance, the tensions between 

his current and anticipated achievement in mathematics, and his ability to identify and connect with 

mathematics. There were both consistencies and contradictions concerning these themes.  

Several different times during our interviews, I asked William what he thought it meant to be good 

at mathematics or to be a good mathematics student. Like the parallel narratives described by Josie, 

the answers that he gave included explanations about being a good student in mathematics class 

(behaviour, effort, and attitude) and being a good mathematics student (academics and grades).  

Specifically, in defining what it means to be a good mathematics student, William said: 

William:  To be good at mathematics would probably, in my classroom, probably be like that 

you’re on top of your work, and like you’re really like, organized and you get good 

grades like in mathematics and you know what you’re doing and you’re not just 

like, just like, try, just barely even doing good, like you’re just actually trying to do 

good and stuff. 

William also said that an adult who is good at mathematics probably did well in mathematics in 

school, went to college or university where they studied mathematics, and had a job that involves 

using mathematics. Although mathematics was William’s lowest mark in secondary 2 and he found 

it difficult, he still narrated a relatively positive mathematics identity. He told me that he often enjoys 
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doing mathematics and has fun with it and is perceptive enough to appreciate that the reason why he 

finds certain topics less fun is not because he hates mathematics but because it is frustrating to not 

understand. 

William’s identity is more aligned with performing as a good student in mathematics class. Although 

he admitted that he found some of the mathematics topics he was learning this year “overwhelming 

because all of the formulas we have to use…you have to know everything,” he also told me “I think 

I’m okay at it (mathematics)” and: 

William:  Um, well, I’ve probably, like I wouldn’t say like, I’m like, the best but I wouldn’t 

say like the worst, I’m probably like, in the middle between, like, good, and 

mediocre. Because like, some, some of the kids, they won’t answer questions, or 

they won’t share. And most of them like will like, fool around. And so I’m like, 

probably one of the better kids there. But like not, but more like behavior-wise than 

like, mathematics wise. 

William made the distinction that he could still be a mediocre mathematics student academically but 

a good student behaviourally. William also said that he always did his homework in mathematics 

class and tried to participate by answering Josie’s questions—some of the characteristics that he 

linked with being a good mathematics student—even though most of his classmate didn’t do their 

work and weren’t active class participants. This showed the importance that Williams placed on effort 

and attitude in mathematics class. When asked why it was important for him to do his homework, 

William’s answer again indicated this distinction between “looking good” (behaviour) and “doing 

good” (mathematics grade): 

William:  Well, like it used to be because I, like I, well, it still is but I just like I really, I want 

to actually like do well, I want to actually understand the topic. But sometimes it’s 

like it’s like that, but also, I want to like not like brand myself differently, but like 

impress them because like some of them like know my mother because she works 

at my school. 

Conversations with William revealed tensions between William’s desire and perceived ability to do 

better in mathematics, and his current level of effort and performance and changing understandings 

of how important mathematics might be for his future. William’s narratives about his effort in 

mathematics were at odds with his definitions of a good math student as someone who tried hard. 

During all three of our interviews, William mentioned that he felt he could get better grades in 

mathematics if he put in more effort, that his current marks did not reflect his capabilities and that he 

had the potential to “do better.” Despite previously defining himself as “between good and mediocre” 

in mathematics, he also framed his mathematics performance as subpar due to his lack of effort: 

William:  Like, I think I’m, where I, like I feel like I could do better if I put in like, the time 

and the effort. But overall, like, I feel like I, like the grades are okay, I know I can 

do better. But if I actually, like tried, and if I really, really wanted to, but like, I’m 

in a good place now. 

This was a consistent narrative for William, on multiple occasions he explained he could do better, that 

the effort that he put into mathematics was enough to get him a “good mark” or “to at least pass” but 

he could do better and “get that amazing mark” if he really tried, and that he had “the potential to do, 
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actually do really good.” When asked how his friends would describe him as a mathematics student, 

William told me that he thought his friends would say he is a good mathematics student, but not “at his 

fullest potential” and that he could “rise to the occasion” in mathematics if only he worked on it. 

Similarly, when I asked him what his parents said about his 63% in mathematics on his term 1 report 

card, William said his parents were not mad, but thought he could perform better in mathematics. In 

another conversation, William told me that his mother was the first person to know about his marks 

since she works at his school and with his mathematics teacher, and that she knows that he doesn’t do 

“amazing,” is mostly “mediocre” and that mathematics “isn’t my strongest suit.” Since William’s 

descriptions of his efforts in mathematics closely mirror how he is positioned by Christine, it seems that 

he has assimilated her discourses into his authoring of his mathematics identity. 

Despite saying he was in a “good place” with his mark, William also expressed some uneasiness 

about his 63% in mathematics in term 1 and expressed the desire to improve academically, telling me 

“it [his mark] isn’t the best because I know I could do better. And I know I’m going to do better.” 

When asked why he wanted to do better in mathematics William’s response suggested an intrinsic 

desire to really understand what he is doing to make future mathematics classes easier:  

William:  So and then I can understand it. And then, like, it’ll just be easier if I ever have to, 

like, do it again, or relearn the lesson, or just have any like to use it like, any day, 

it’ll just be easier for me to understand it. I just want to do it. 

Despite this desire to get a better mark in mathematics and his statement that “I don’t think like you’re 

born with it [mathematics ability], I just think that it’s the effort you put into it,” William’s continued 

insistence that he could do better if only he tried harder came across as somewhat defensive, a 

response to his confusion about why his participation, homework completion, going for extra help 

from his teacher, etc., were not translating into academic achievement. William alluded to this when 

he told me that he did worse than expected on mathematics evaluations based on the effort he put into 

doing his work: 

Willliam  But my effort I’m putting in, like, when I try to do it, it just doesn’t exceed to like 

my expectation of what I thought I was gonna get. And so I think I just over, like, I 

get overconfident or like confident, and then I just like, expect a higher expectation 

than what I really get. 

William expressed some uncertainty about how he would or could bridge this gap between his current 

and future academic achievement in mathematics, and it seemed unclear what he could do to work 

any harder. During our final interview he told me that his goal for Secondary 3 mathematics was to 

succeed, get the best marks he possibly could, and be motivated to do well. When asked how he 

planned to put that plan into action and motivate himself more, William couldn’t articulate how he 

was going to do this, telling me that he didn’t know what to do right now, but that he would probably 

think of something to do later to improve. Similarly, when I asked about the mathematics, he would 

need to be an architect or a health science professional, he told me that by the time he got to those 

programs, he would “probably be able to do it.”  

Over the course of the school year, William frequently framed school mathematics as a subject that 

he often felt had little relevance to the real world and narrated a lack of engagement with school-

based mathematics as a subject. He clearly recognized that mathematics has “real-world” importance 



 73 

and applications, but also told me that many of the mathematics subjects in secondary 2 wouldn’t be 

useful outside of the walls of the mathematics classroom. This distinction between mathematics for 

use in the real world and mathematics that is irrelevant for real life is important, because William 

used this perceived irrelevance and lack of authenticity as a reason not to focus on certain topics: 

William:  There’s no like one that I, like prefer the most, it’s just I’d rather do like if I if I 

understand it well, I’d rather more focus on those, or like the ones that I’ll actually 

have to use like in the real world, because I feel like if we just do the ones that we’re 

not actually going to use in the real world, then I feel like we’re just wasting time.  

As an example, William said that finding the surface area and volumes of polygons and three-

dimensional shapes were not topics that he thought were important for life, unless they were needed 

for a particular career, and that these topics should not be mandatory to learn in secondary school. 

Instead, the topics he deemed important are those that you’ll “actually need” and will “use it every 

day,” for example how to calculate costs at the grocery store or being able to measure and convert 

these measurements to different units.  

During our first interview, William made it clear that he did not see himself as pursuing a career that 

involved the daily use of mathematics. However, during our last interview William expressed 

interests in careers in either architecture or something in the health sciences. He seemed to understand 

that both these jobs would involve the daily use of mathematics, for example when giving 

prescriptions or calculating costs, and did not seem worried about the mathematics that would be 

involved in those programs at the Cégep or university level. Considering that William identified 

someone who is good at mathematics as a person who studied mathematics after secondary school 

and has a career that involves the use of mathematics, this shows a possible shift in William towards 

a more positive affinity with mathematics as well as confidence for the future.   

Conclusion 

This case study reveals that the mathematics identity work performed by one secondary student who 

was born extremely preterm is complex and informed by the figured worlds of home, school, and 

prematurity, positionality, space of authoring, and available identities.  

The figured world of William’s mathematics classroom was a place in which class conduct, effort, and 

hard work were valued over achievement and interest in the subject. William described himself as a 

competent mathematics learner in that he participated in class, completed his homework, and behaved 

well, and this is reflected in how he was positioned by his mother, Christine, and his mathematics 

teacher, Josie. Despite this, Williams’s mathematics identities of competence were limited. During our 

first interviews William did not fully value school-based mathematics and was alienated by the topics 

in secondary 2 mathematics and the behaviour of his classmates. Nonetheless, at the end of the school 

year, he expressed a desire to improve his marks and potentially continue into post-secondary programs 

that required a more advanced knowledge of mathematics. However, William’s past difficulties in 

mathematics and his teacher’s partially dismissive view that his struggles were no worse than those of 

other students meant that certain socioculturally available mathematics identities (Fellus, 2019) related 

to academic achievement may not be readily available to him.  

These limited identities resulted in tension and conflict in the way that William represented himself 

as a mathematics learner and doer and identified positively with mathematics—participating and 
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completing all his work but confused about why this was not translating into academic success. To 

explain this discrepancy, William took up an achievement-motivation master narrative. Zavala and 

Hand (2019) refer to this as the ability of “individual students to be more successful in math and 

science by exerting effort and overcoming obstacles that arise in learning these subjects” (p 803) even 

though there may be factors beyond students’ control that impact on their learning and achievement 

in mathematics. Several times during our interviews, William alluded to the fact that he could do 

better in mathematics if only he worked harder and put in more effort. This narrative was also voiced 

by his mother, showing how William has taken up and integrated the discourses of significant others 

in his mathematics identity.  

At home, William is a participant in a figured world of prematurity that is also informed by his 

mother’s view of mathematics as difficult and possibly less relevant than other subjects. In this 

figured world, Christine does not view William’s preterm birth as having a negative impact on his 

learning and achievement (“no repercussions”), despite her reference to subtle executive function 

problems that could be preventing William from reaching his full potential in math. One of the actors 

in the figured world of home is William’s brother Scott, whose significant NDI may have resulted in 

Christine minimizing William’s difficulties in school in general and with mathematics. This figured 

world of prematurity could be seen as a positive if parents view their extremely preterm children as 

no different from term-born children. However, it also means that if clinicians and psychologists are 

concerned about academic issues in extremely preterm children, there needs to be better knowledge 

translation (KT) or follow up with the parents and teachers of these children, especially for those who 

are at particular academic risk. My ongoing analysis will reveal whether this figured world of 

prematurity is consistent across cases.  

In conclusion, initial findings from one case of a secondary student born extremely preterm highlight 

the complexity in his mathematics identity work, learning, and academic success. This complexity is 

not captured in the current research literature about preterm children and mathematics. Future analysis 

will provide more insight on this understudied topic.  
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Incorporating experiments into the learning of mathematics 

Amenda Chow1 

 

In teaching, experiments are a tool to complement classroom theory and enhance student learning. 

There is a lack of experiments in the teaching and learning of mathematics, especially at the 

undergraduate level. This article provides further insights, helpful suggestions, and examples on 

incorporating experiments into a university-level mathematics curriculum.   

Keywords: Math experiments, active learning, mathematical modelling, exploration, experiential 

education. 

 

What is an experimental math space?  

Background and motivation 

In many university science, technology, engineering and mathematics (STEM) courses, there is often 

an experimental lab component that accompanies the lecture portion of the course. For example, 

students may go into their biology lab for a frog dissection, which complements a biology lecture 

about anatomy. Experimental labs are an important part of undergraduate student learning as they 

provide hands-on practical experience and offer a different perspective from the theories taught in 

lectures. Experimental labs also offer an opportunity for teamwork, exploration, design, creativity, 

and reflection. However, such labs are not normally used to support the learning of mathematics. 

It has been noted for some time that there is an insufficient amount of experimentation in STEM 

classrooms, and this deficiency starts in early education (Atkin & Karplus, 1962). About twenty-five 

years later, Bishop (1988) notes his concerns about the style of mathematics teaching: 

From my perspective of a cultural view on mathematics education, I see four major areas of 

concern about the present state of mathematics teaching. They are the technique-oriented 

curriculum, impersonal learning, text teaching, and the assumptions which lie behind these. 

(Bishop, 1988, p. 7) 

Hurst, Rennick, and Bedi (2019) note that engineering students are not receiving sufficient 

experimental design experience that will be required in their professional career and their suggested 

solution is to implement engineering design days. These are two days where classes are cancelled, 

and students work in teams to solve real-world problems that are built on the theory learned in their 

courses. Problems include constructing functioning furniture, building a dam with sustainable 

materials and creating software for a video game. Rather than engineering design days, in the 

mathematics discipline, an experimental math space is a possible solution.  

Such a space is a physical laboratory, which holds equipment for students to conduct experiments 

related to the mathematical concepts they are learning. An experimental math space is meant to 

inspire exploration and experimentation in teaching and learning. Interested instructors can 

incorporate experiments into the mathematics they want to teach to their students. Whenever possible, 
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experiments should relate to authentic real-world situations, and be relatable to students as this supports 

retention, engagement, grades, and recruitment (Campbell et al., 2008). Campbell et al. explain: 

Students who felt they learned more were also more interested in the course and felt that they, and 

others, participated more in the course. This same relationship occurred with the applications. For 

students, interest and learning are very tightly tied together and both are tied to participation. Other 

data collected about student learning and interest appear to support this. Real life applications can 

increase student interest and participation. (Campbell et al., 2008, p. 9)  

Examples of mathematical experiments could be to use robots to model and simulate random walks 

in a math modelling course, collecting the measurements of a spring-mass system for an ordinary 

differential equations course, constructing physical graphs using manipulatives in a graph theory 

course, or folding origami shapes to investigate geometry concepts. In these examples, robots, spring-

mass system, manipulatives, and origami paper would be objects housed in the experimental math 

space. More detailed examples appear later in this article. 

Implementation  

The equipment contained in an experimental math space should be flexible, scalable, sustainable and 

inclusive. For instance, being mindful of purchasing equipment that is reusable and portable. As this 

is to be a welcoming and inclusive environment, there should be no cost for those interested in using 

the equipment in the experimental math space.  

The actual experiments may be conducted by students in the experimental math space or may be taken 

outside of the space and into classrooms. Students may work in groups or independently when conducting 

experiments. Along with this, the experimental math space can facilitate other aspects of course 

development and completion. For example, instructors can use the equipment to explore concepts they 

want to teach and prepare their lessons. It can also be used by students who are completing course projects 

that benefit from an experimental component.  Outside of the classroom, an experimental math space can 

also play a role in both student and faculty research projects, as well as for engagement activities such as 

math camps for high school students and STEM workshops for members of the community or as part of 

recruitment events during campus tours and department open houses. 

In one type of mathematical experiment, students assist with the experimental design and conduct the 

experiment to collect and analyze the resulting data. For example, in one calculus course, students 

measured the time it took for a balloon to travel various heights and used the results to verify 

equations of motion (Gruzka, 1994). In another calculus course, to teach flow rates and ordinary 

differential equations, student volunteers were asked to drill a small hole inside a cylindrical 

container, fill it to a certain water level, and measure the time it took for the water level to go from 

10cm to 3cm (Farmer & Gass, 1992). In both experiments, the materials (e.g., balloon, measuring 

tape, containers, etc.) are readily available household items, and inexpensive to purchase if needed.  

There may be accompanying computer software needed to operate some of the equipment and collect 

experimental data. Using software is part of the experiment and part of student learning, and software 

also complements the mathematics being taught (Brown, 2014; Mamolo et al., 2011; Pudwell, 2017; 

Wohak & Frank, 2022). For Brown (2014) and Pudwell (2017), experiments are about exploring 

mathematics via computation using software. In particular, Brown explains,  
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Experimentation was designed to focus on a specific set of goals: 1. Explore mathematical 

phenomena experimentally. 2. Detect patterns and provide mathematical explanations. 3. Explore 

mathematical thinking and process of conjecture. 4. Design and implement mathematical 

algorithms with computer algebra systems. (Brown, 2014, p. 283)  

In Mamolo et al. (2011), undergraduate students were given clear plastic pyramids that could be filled 

with water. By filling the pyramid under various conditions, students explored spatial reasoning and 

geometric modelling in a tactile way. This was then followed by student work on the software ‘The 

Geometer’s Sketchpad’ to investigate the rescaling of a two-dimensional pyramid (triangle), and to 

encourage connections between two-dimensions and three-dimensions.    

Other types of mathematical experiments can be classroom demonstrations conducted by the 

instructor, or classroom activities in which students explore concepts using tactile objects.  For 

instance, in a geometry course, Zome tools (Figure 1) can be used to build three-dimensional 

structures, which is helpful for students learning about visualization and abstraction.   

 

Figure 1: A three-dimensional structure built from Zome tools 

Rather than Zome tools, students could construct geometric structures using found objects at home 

such as a malleable wire hangar. Encouraging students to recreate experiments on a simple scale 

using inexpensive objects and to do so outside the classroom is important because this conveys 

experimentation is a part of everyday learning (not just learning in a classroom) and inspires 

creativity, sustainability and flexibility. The focus of experimentation should be on the concepts 

taught, rather than on fancy expensive equipment.  

Assessing student performance in an experiment is context dependent. For experiments that are in the 

form of classroom activities, like building models in a graph theory course, students may be evaluated 

on an oral explanation of their model. Classroom demonstrations conducted by the instructor may 

lead to class participation in online polls or surveys that record students’ responses and grades. 

Experiments that require computer programming may be evaluated based on the students’ code or 

graphs generated by the code. Experiments that have data collection may be assessed on the student’s 

lab report, which addresses experimental design, math modelling, interpretation of the data, and 

results of the experiment. Brown noted the importance of this:   

Each lab report goes through the writing and editing process. Although time-consuming, writing 

and editing helps students understand the importance of careful reasoning and precision when 

explaining mathematics. (Brown, 2014, p. 288) 
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It follows that the student learning outcomes for incorporating experiments into the mathematics 

curriculum include: 

(a) improving student persistent, retention and engagement, 

(b) reducing math anxiety, 

(c) supporting different learning perspectives,  

(d) encouraging teamwork, communication skills and creativity, 

(e) developing mathematical reasoning via experiential learning, 

(f) practicing mathematical algorithms using computer software, and  

(g) connecting mathematics to authentic real-world applications. 

Dissemination 

Incorporating experiments into the study of university-level mathematics appears in various forms at 

different institutions. For example, the book by mathematics professors Banks and Tran (2009) was 

written based on several years of designing and teaching experiment-focused and modelling-focused 

math courses at North Carolina State University. They state the following:  

Our experience with this approach to teaching advanced mathematics with a strong laboratory 

experience has been, not surprisingly, overwhelmingly positive. It is one thing to hear lectures on 

natural modes and frequencies (eigenfunctions and eigenvalues) or even to compute them, but 

quite another to go to the laboratory, excite the structure, see the modes, and take data to verify 

your theoretical and computational models. (Banks & Tran, 2009, p. i)  

The three experiments presented in Banks and Tran (2009) are: (i) heat transfer of copper and 

aluminum, (ii) vibrations in a beam, and (iii) acoustic wave propagation in a PVC pipe. In addition, 

there is considerable discussion on the mathematical modelling and computational simulations 

associated to each experiment. That is, their entire math course is designed with a primary focus on 

modelling, simulating, and experimenting.  

In Canada, at the University of Waterloo, the Department of Applied Mathematics has several 

experimental math spaces each focusing on a particular field such as fluid dynamics, control theory, 

or mathematical medicine. These are primarily used for research and time spent in them is often done 

by graduate students.   

The experimental math space in York University’s Department of Mathematics and Statistics is 

focused on teaching and learning in undergraduate math courses (Chow, 2022). It is funded by a 

university teaching and learning grant. Its logo is shown in Figure 2, which conveys the 

interconnection between mathematics and experimentation.   

 

Figure 2: Logo for Experimental Math Space at York University 
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Examples of math experiments 

All the examples of math experiments noted in this section are part of the collection housed inside 

York’s experimental math space. They are used in several department math courses by various 

instructors. The discussions in each example highlight several learning outcomes presented in the 

previous section such as writing skills, use of software, working with others, connections between 

mathematical concepts and practical authentic applications, and reproducing experiments on a 

simpler scale. 

Pendulum Experiment. The dynamics of a simple pendulum (Khalil, 2002, p. 5), illustrated in 

Figure 3, are described by the ordinary differential equation 

�̈�(𝑡) = −
𝑘

𝑚
�̇�(𝑡) −

𝑔

𝑙
sin(𝑦(𝑡)) + 𝑢(𝑡) 

Equation 1: Second order differential equation for the dynamics of a simple pendulum 

where 𝑙 is the length of the pendulum and 𝑚 is the mass at the end of the pendulum, and 𝑦(𝑡) is the 

angle of the pendulum from its rest position over time 𝑡. The parameters k and 𝑔 are the coefficient 

of friction and gravity, respectively. The external applied force is 𝑢(𝑡). 

 

Figure 3: The dynamics of a simple pendulum 

When a force is applied, the simple pendulum moves left to right in the plane. In three-dimensional 

space, the movement of the pendulum is more complicated. Shown in Figure 4 is a pendulum 

experiment designed by Canadian engineering education firm, Quanser. The vertical blue rod is the 

pendulum, and the pendulum is connected to a cube-shaped rotary servo base by a rotary arm. The 

cube base has a motor, which controls the movement of the rotary arm and pendulum. The black box, 

displayed in Figure 5, that is to the left of the pendulum, powers the movement of the pendulum and 

is the interface between the pendulum and the laptop on the right.  
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Figure 4: Pendulum-rotary apparatus from Quanser 

 

 

Figure 5: Quanser's pendulum experiment 

The software used is MATLAB’s Simulink, which uses block diagrams and connection lines to model 

and operate the various components of the pendulum’s dynamics. A Simulink block diagram 

representing the dynamics of the pendulum is shown in Figure 6. Once the Simulink model runs, the 

pendulum swings, and this movement is recorded. A graph modelling the left right motion of the 

pendulum is shown in Figure 7. 

 

Figure 6: A simple example of a Simulink model for the pendulum experiment 

Rotary arm 

Rotary 

Servo Base 

Pendulum 
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Figure 7: The graph displays the position of the pendulum over time. Position is on the vertical axis 

and time (in seconds) is on the horizontal axis 

The pendulum experiment can be used for different objectives. For example, using damping to reduce 

oscillations, or applying feedback to invert the pendulum into an upright position. Prior to working 

with the pendulum apparatus, students form their lab groups (typically two to three students in each 

group) and are given a prelab, which prepares them for the actual experiment. The prelab gives an 

overview of the experiment, and a few preliminary questions to be answered, which are submitted by 

the lab group for evaluation, and returned with feedback to the students prior to the start of the actual 

experiment. Some examples of prelab questions for the pendulum experiment are, rewrite Equation 

1 into a first order system of equations, linearize Equation 1, or derive a specific set of equations of 

motion. Prelab questions may also ask about aspects of Simulink or to list appearances of pendulums 

in everyday life. The mathematical concepts used in the experiment are taught in the course lectures 

prior to the prelab.  

Each lab group works on the actual experiment for about two hours. There is normally a teaching 

assistant, lab technician, or instructor present to give guidance when needed. During this time, the lab 

groups set up the experiment, operate it in Simulink, and collect the necessary data that will answer 

questions posed in the experiment’s lab report.  

After completing the experiments, each group has one week to complete their lab report before 

submitting it for evaluation. Questions in the lab report typically require students to submit the graphs 

generated by their Simulink model, analyze the graphs, explore hypothetical scenarios, make 

connections between the experiment and reality, and address functions in the Simulink model.  

Here is a sample question that appeared in the lab report for the pendulum experiment. The question 

is two-fold in that it asks students to compare the measured behaviour of the rotary arm angle in the 

physical experiment to the simulated response of the rotary arm angle produced by Simulink, and to 

make the same comparison for the pendulum angle. The expectation of the students’ response is to 

generate corresponding graphs in Simulink (see Figure 8) and then to provide a written analysis of 

what is shown in Figure 8. From observations of the graphs in Figure 8, it is shown that the behaviour 

of the measured and simulated pendulum angles is similar but not identical, and there is a clear 

difference for the rotary arm angle. The paragraph below is a student’s analysisFigure 8, which 

accurately describes the graphs, uses correct terminology taught in the lectures, and quantifies the 

difference in behaviour between the measured and simulated rotary arm response: 
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The model does not represent the system well. Inspecting the pendulum angle, ∝,  we can see that 

the system closely matches the model, although it is slightly off. However, we can see that the 

rotary arm position, 𝜃,  has some over and undershooting, but we can clearly see that as the system 

reaches steady state, it does not converge to what the model predicts. Although it does not 

converge, we can see that the phase of the model and the plant are the same, and the rotary arm 

angle is offset by approximately 1.2 radians from the model at steady state. Thus, the steady state 

error of the rotary arm is 1.2 radians. 

 

Figure 8: Graphs show the behaviour over a 5-second time interval of the rotary arm angle and 

pendulum angle in the experiment (measured) and in Simulink (simulated) 

Vibrations Experiments. Vibrations are all around us. Sound is vibrations through the air. 

Earthquakes are vibrations on the surface of the earth. We feel the vibrations made by manufactured 

tools like jackhammers, cell phones and electric toothbrushes. Because of their periodic nature, 

vibrations are modelled by oscillatory functions; however, when sine and cosine functions are taught 

in a precalculus course, there is typically no mention of vibrations. In contrast, common topics taught 

in applied math courses, such as mass-spring systems, wave equation, resonance, damping, elasticity 

theory, Fourier analysis, and stability, are all related to vibrations. Consequently, there are numerous 

vibration experiments suitable for an experimental math space that can be incorporated into the 

teaching of these mathematical concepts.  

A string-vibrator experiment (Figure 9) is ideal for visualizing vibrations. These vibrations are caused 

by the sine wave generator shown on the bottom left of Figure 9. The stable nodes (points of no 

vibration) in the standing wave are clearly visible. In this experiment, students are encouraged to 

explore string vibration by changing the frequency on the wave generator, or by varying the tension 

and length of the string.   
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Figure 9: String vibrator apparatus 

The string-vibrator experiment inspires a simpler homemade version whereby one takes a bowl and 

wraps an elastic band around it, and then plucks the elastic band. The vibrations are clearly visible 

(Figure 10) even in this rudimentary form. A second useful and inexpensive demonstration of 

vibrations is with slinkies, which can be used to generate different types of waves (standing, 

travelling, transverse, longitudinal). There are also free online oscilloscopes and mobile phone apps 

like phyphox (Carroll & Lincoln, 2020; Staacks et al., 2018) that measure various properties of 

vibrations like frequency and amplitude. Phyphox can measure other quantities like position, speed, 

acceleration, and pressure, and this collected data can be exported for analysis onto a computer. An 

example of using phyphox and experimental data in a calculus course to compute the time of an object 

falling to the ground can be found in Chow, Harrington, Leung (2023). Phyphox was developed with 

educational physics labs in mind. Free online software and found objects at home are easily accessible 

tools for experimentation that enhances mathematical learning. 

 

Figure 10: Vibrations created by wrapping a rubber band around a bowl and plucking the rubber 

band 

The vibrating string (one-dimensional object) experiment in Figure 9 can be generalized to a vibrating 

plate (two-dimensional object). This vibrating plate experiment was created by scientist and musician 

Ernst Chladni (1756 to 1827). Ullmann (2007) states Chladni’s experiment “is the first real effort to 

experimentally investigate the nature of sound” (p. 1).  

A modern version of Chladni’s plate experiment is illustrated in Figure 11. The square shaped metal 

plate is on top of a mechanical wave driver, which vibrates the plate. The driver is connected to a sine 
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wave generator, which controls the frequency of the vibration. Sand is sprinkled over the square plate 

and as it vibrates, the sand collects along regions that are not vibrating (stable nodes). This creates 

aesthetically pleasing sand patterns called Chladni figures, which form interesting symmetries and 

patterns (Waller, 1961). The location of the stable nodes can be determined mathematically and 

simulated using software like MATLAB or Python. In an earthquake prone region, knowing the stable 

regions is beneficial as these are ideal locations for emergency shelters and hospitals. The vibrating 

plate experiment may be reconstructed from found objects at home such as a speaker, plastic wrap 

and a salt or pepper shaker.  

 

Figure 11: Vibrating plate experiment 

The vibrating plate experiment can be used as an example of mathematics in art (Fenyvesi, 2016; 

Fenyvesi & Lahdesmaki, 2017; Ornes, 2019). Different shaped plates and frequencies create artistic 

Chladni figures, which can be modelled by partial differential equations. For a circular plate, the 

Chladni figures have concentric circles as their pattern, and relationships between the frequency and 

number of circles have been developed, e.g., Chladni’s Law (Rossing, 1982). The frequencies and 

sounds produced in the experiment can be an application for properties of sinusoidal functions and 

music. For example, Worland (2011) re-imagines this experiment with drumheads, rather than metal 

plates. Wohak and Frank (2022) present a lesson plan that showcases the mathematics and technology 

needed to compress audio signals. Chladni, whose love for music likely encouraged his lifelong 

scientific pursuits of sound, is considered by many as the founder of acoustics (Ullmann, 2007).  

Quanser’s flexible link apparatus is another example of a vibrations experiment. In Figure 12, there 

is a flexible link (object that looks like a metal ruler), which is free on one end, and fixed on the other 

end to a rotary servo base unit. The flexible link experiment is operated by Simulink and has the same 

physical set up as the pendulum experiment shown in Figure 5 except the flexible link (rather than 

the pendulum) is mounted on top of the rotary servo base. As with the pendulum experiment, lab 

groups working on the flexible link experiment submit a prelab, gather data, and complete a lab report. 

The flexible link is similar in structure to objects like the wing of an airplane, a diving board, tree branches, 

the human arm and leg, etc. Vibrations can occur in each of these objects. In the flexible link experiment, 

once the link reaches its left most position (top image in Figure 12), it vibrates for a set length of time, 

and then it moves to its right most position (bottom image in Figure 12) and vibrates for another set 

amount of time. This repeats until stopped. Objectives of the flexible link experiment may be to 

investigate the behaviour of vibrations when the link is disturbed by an external force (akin to, for 

example, wind disturbance on an airplane wing), or to design a feedback model which reduces vibrations.  
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Figure 12: Quanser's flexible link. Displayed on the laptop is the motion of the link as it moves from 

left to right. Its left most position is the top image and its right most position is the left image 

Moment of Inertia Experiment. In a multivariable calculus course, moment of inertia (also known 

as rotational inertia) is a commonly taught application for triple integrals (Stewart, 2016). For 

instance, the moment of inertia, 𝐼, of an object with volume 𝑉 and density 𝜌 is  

𝐼 =∭ 𝜌𝑟2
𝑒

𝑉

𝑑𝑉 

Equation 2: Moment of inertia formula 

where 𝑟  is the distance of the object to the axis of rotation.  

An accompanying experiment is pictured in Figure 13 showing two objects of the same mass and 

same size, but that are differently shaped. The gray coloured object is ring shaped (hollow), and the 

yellow coloured object is disc shaped (solid). The objective of the experiment is to determine which 

object will roll down the plane fastest. The moment of inertia is affected by the spatial distribution of 

mass around an axis of rotation. In this case, the ring has most of its mass distributed around the edge, 

and this leads to greater rotational inertia (i.e., resists the change in motion more) than the disc. That 

is, the ring will move slower and hence, the disc will roll down the plane faster.  

Addressing which object rolls down the plane fastest can also be answered by computing the angular 

acceleration of each object using Equation 2 and Newton’s second law for rotation. The acceleration 

will be less for the ring, which supports the observation of the experiment.  
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Figure 13: Two objects of the same mass and size (but differently shaped) race down the inclined 

plane. Which object wins the race? 

The experiment in Figure 13, while a simple classroom demonstration, allows students to explore 

many variations. For instance, what happens when it is two sphere shaped objects or if the height of 

the incline plane is changed or the two objects are of different size but with the same mass? This is 

also an experiment in which mobile apps like phyphox may be used to measure the timing, 

acceleration, and velocity of the moving objects. 

Reflections and looking ahead 

In the course where the Quanser pendulum experiment was used, we note student feedback on the 

experimental aspects of the course. The course had eight students officially enrolled; however, one 

of these students submitted no work in the course and did not attend lectures or labs. Two of the 

students were graduate students, while the remaining were undergraduate students. This is a course 

cross-listed with engineering and all the students enrolled were studying engineering programs, 

except for the one absent student who was in a math program.    

Towards the end of the semester, students were asked to complete an anonymous online evaluation 

of the course. Three students completed the evaluation, and there were two lab specific comments, 

which are noted below: 

I enjoyed the lectures and labs, I felt they were helpful in conveying the necessary knowledge on 

feedback control. 

I wish the labs could have involved more Simulink design, we changed a few blocks for the labs, 

but most of the model was already built for us.   

Based on the second student comment, at least one student wanted their labs to be more challenging. 

In future offerings of the course, this is something that may be implemented as an optional bonus 

component for students who want to challenge their experimentation skills. We may also request 

students give an oral presentation of their experiments and findings so that they can practice more of 

their presentation and communication skills. However, in general, the addition of the labs in the 

course was beneficial to student learning.  

Aside from the formal course evaluations, during the last lab of the semester, students who attended 

the lab (three in total) were asked for general feedback on the lab component of the course by the 

teaching assistant (TA). This was done in a conversational informal manner. The TA had assisted the 

students with their labs throughout the entire semester; that is, the students knew the TA.  Here are 

the notes of the TA based on what the students were willing to share:   

(i) enjoy group element, 
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(ii) good for conceptual understanding, 

(iii) good balance between math and homework assignments and the lab component to apply their 

knowledge, 

(iv)  visual feedback and perception.  

The last comment about visual feedback and perception seems to be missing some context, but it has 

been included for completeness. Overall, student responses are positive, but collected from a small 

group and anecdotal, so further rigorous study on the impact of experimentation on student learning 

in a math course is needed.   

Through sharing the commonality of experimental labs, an experimental math space is an opportunity 

for mathematics to better connect with other STEM disciplines, and to possibly develop 

interdisciplinary courses whose curriculum is completely based on experimentation. The previous 

section noted engineering and physics examples, but other fields are possible. For example, a math 

modelling course is a natural place to teach connections between mathematics and biological systems, 

and to conduct corresponding experiments (Robic & Jungck, 2011). A geometry course may be an 

opportunity for experiments involving microscopes to learn about scale, position and measuring, and 

to explore the micro-world where artistic patterns like fractals and tessellations may appear. In 

another instance, a math and music course is an avenue to incorporate phyphox, vibration 

experiments, and computer software. In general, experimental math spaces can be a chance for artistic 

collaborations, which provides connections to such areas as group theory, geometry, nature, puzzles, 

computer graphics, architecture, textile design, etc. The possibilities are vast.    
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Rapturousness in makerspaces: Delight in construction 

Olga Fellus1 and Viktor Freiman2 

 

In efforts to bring change to their educational systems, New Brunswick, K-12 schools have been 

introducing new learning environments since 2014 (NB, Canada). These changes include the 

integration of makerspaces targeting STEAM disciplines and the formulation of new learning 

objectives such as the use of new technology and the development of 21st century skills (Freiman, 

2020). This paper discusses part of a larger CompeTI.CA project (Compétences en TIC en 

Atlantique/ICT Competencies in the Atlantic Canada). We focus on the construct of simultaneous joy, 

delight, and enthusiasm to describe students’ engagement in and commitment to building a shelter 

for their stuffed animal. We suggest the construct of rapturousness to describe makers’ emotional 

expression. We present a case study featuring an engineering challenge that kindergarten students 

were trying to solve when designing a shelter for their stuffed animals at one elementary (K-5) 

school’s STEM Lab. Aligned with the need to help children to navigate increasingly complex realities, 

and the need for students to have equal opportunity to study and appreciate processes of problem 

solving, innovative environments target learning objectives of a new 10-Year provincial Education 

Plan, which include improving numeracy skills for all learners as a key element in STEAM education, 

and enhancing learning in—and application of—the arts, science, trades, and technology for all 

learners (Province of NB, 2016). Reaching these goals would result from a better understanding of 

feelings of joy, delight, and enthusiasm when doing mathematics.  

Keywords: Makerspaces, delight, fun, joy, enthusiasm, rapturousness, engineering challenge 

 

Introduction 

In early school years, the development of numeracy skill is recognized as critical to “providing a 

strong foundation to prevent gaps in student learning” (Province of NB, 2016). Numeracy skill 

necessitates sustained efforts throughout formal schooling and beyond focusing on problem solving, 

a strong foundational understanding of mathematics, and hands-on experiences. Against this 

backdrop, an increasing attention needs to be turned to community-school partnerships where 

educators are enabled “to provide learners with additional practical and ‘real world’ application of 

mathematical principles and concepts” (Province of NB, 2016, p. 11). This is particularly important 

in the case of makerspaces where strong partnerships with independent groups and associations, such 

as Brilliant Labs, allow schools to obtain resources and guidance from STEM-experts. Our study 

seeks to push to the fore the affordances of such collaborations, where mathematical principles and 

concepts surface in connection to other types of skills and capacity building, such as perseverance 

(Freiman et al., 2022). Our 2022 MACAS presentation focused on the concept of rapturousness that 
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describes makers’ joy, delight, and enthusiasm when engaged in constructing a shelter for their 

stuffed animal. 

Conceptual framework 

We introduce the concept of rapturousness as an object of investigation in mathematics education in 

general and makerspaces in particular. We define rapturousness in a broad sense to include, at once, 

feelings of joy, accomplishment, and satisfaction. More on this in the next paragraph. Our work 

clusters the following concepts: rapturousness, engineering challenge, and design thinking in 

makerspaces and is couched within scholarship that highlights the inter- and transdisciplinary role of 

mathematics in STEM contexts (LeBlanc et al., 2022). This work also connects to a novel socio-

ecological perspective of learning mathematics (Coles, 2023) that pushes to the fore mathematics 

education that is “marked by reciprocity, responsibility to others and by joy” (p. 19), that raises 

“questions of affect” (p. 22), and that taps “affective responses of engagement and even excitement) 

(p. 23). In this paper, our focus is on the theory and experience of the last words in these quotes—

joy, affect, and excitement.   

Rapturousness: While rapturousness is not very often used in the research literature, we see it 

connected to socio-emotional aspects of learning through movement and action (see De Freitas & 

Sinclair, 2014) in the making journey. We understand rapturousness as a feeling that combines 

triumph over an obstacle and self-management. This sense of rapturousness comes across in the 

writings of Pikionis (1989) who reminds us, “As we walk upon this earth, our hearts experience anew 

that rapturous joy we felt as children when we first discovered our ability to move in space—the 

alternating disruption and restoration of balance which is walking.” (p. ). As we think about the 

concept of rapturousness, we see its connections with the Russian word vostorzheni, which is used to 

describe—simultaneously—a sense of joy combined with delight. In English, the concept 

rapturousness semiotically offers a blend of elatedness, delight, pleasure, gratification, satisfaction, 

and triumph. The concept of rapturousness zooms in onto the intersection point of work in STEAM-

based environments and affective aspect of the process of making through feelings of joy, 

gratification, and delight. This, we argue, corroborates the trend and direction to incorporate self-

management through socio-emotional learning in education by allowing students opportunities and 

choices in what, how, when, and why they learn (Cristóvão et al., 2017). Against this backdrop, 

rapturousness, in our research, is operationalized through noticing expressions of sheer joy, high level 

of engagement, and exquisite delight. Specifically, we examine rapturousness in the context of 

mathematics education as intrinsically connected to students’ work in other STEM disciplines. 

We situate our work within the immense amount of growing literature on affect in STEAM-based 

environments in connection to mathematics education (e.g., LeBlanc et al., 2022) where affect and 

other denotations that are relevant to the concept, such as appreciation of aesthetics in mathematics 

(Sinclair, 2004, 2011) have been recognized as determining factors in students’ learning and 

wellbeing. While emotions have been specifically identified as one of the three necessary types of 

engagement for developing mathematical thinking (physical and intellectual engagement being the 

other two) (Mason et al., 1982/2010), research that sheds light on positive emotions such as the 

concept of rapturousness that we are offering in this work remains dearth.  

Engineering challenges provide students with opportunities to (1) design objects, (2) collaborate 

with others, (3) and learn science through processes of creativity while (4) using available materials 
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such as cardboard. Designing objects helps students to see connections between science concepts and 

solutions to real-world problems (Sadler et al., 2000). Collaborating with others helps children 

develop understanding through interaction with and regulation of their environments (DeJarnette et 

al., 2021). Using materials such as cardboard allows for embodied activities, creativity, and 

imaginative play. It also contributes to students’ wellbeing, enhances social and emotional 

development, while ensuring physical safety (Deed et al., 2022).  

Understanding the affordances of engineering can also be rationalized through the lens of learning 

theories. The maker mindset is conceptualized through the theory of constructionism, which 

emphasizes child-led activities and interactions, where thinking processes are more valuable than 

end-products, and exploration and experimentation are positioned as core to the process of learning. 

Constructionist thinking draws on constructivism, another learning theory, that considers how 

learners construct knowledge through interaction, and experience and exchange ideas (Fletcher, 

2007). Exploration and experimentation help students to articulate their mathematical reasoning, and 

make conjectures, and test to see if the conjectures are correct (LeBlanc et al., 2022). These stand in 

contrast to behaviorist conceptions of learning, which “dropped from [their] scientific vocabulary all 

subjective terms such as sensation, perception, image, desire, purpose, and even thinking and emotion 

as they were subjectively defined” (Watson, 1930, p. 5). As educational systems shift, educators today 

attempt to bring design-based learning experiences into the 21st century classrooms, which move to 

an explicit integration of social, emotional, and academic skills (Darling-Hammond & Cook, 2023; 

Zhang et al., 2022). 

From this perspective, self-management and responsible decision making on the part of the students 

tie this work with literature on social-emotional learning (SEL), a new strand across contexts and 

curricula that is aimed at supporting the development of well-rounded citizens who can contribute 

“to the fulfilment of social demands” (Lee & Lee, 2021). One of the international trends we identify 

is to develop in students’ skills of self-management and learning-related decision-making processes 

(Freiman et al., 2022). Research on makerspaces occasions such opportunities and supports positive 

SEL experiences (Darling, 2022). In the Canadian context, we notice an increased attention of 

provincial educational systems to SEL; for instance, Ontario introduced SEL in its new curriculum 

in mathematics (2020); New Brunswick (French) added socio-affective competence in its Exit Profile 

for Francophone Secondary School Graduates (MEDPENB, 2016). Our work on rapturousness 

suggests that makerspaces carry untapped potential in contributing to these concerted efforts of 

integrating SEL into school curricula.  

Data collection and analysis 

Two groups of 20 kindergarten students and two teachers participated in the study. The researchers 

collected data during students’ work using video recording and post-project interviews. The children 

were instructed to build a shelter to protect their stuffed animal from rain and high winds. In building 

a shelter for their animal, the children used different cardboard materials and child-friendly 

construction tools such as safe saws and plastic screw drivers and screws. The children worked in 

small groups of 2-3, with minimal teacher guidance. Twelve video segments were first analyzed 

observing the above-mentioned markers throughout the design of the shelters and the construction 

process. Then, initial codes were assigned to children’s facial expressions and gestures first within 

each video segment and then across all video segments to finally investigate common aspects within 
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and between all segments. Our initial analysis was guided by Hughes et al.’s (2019) design thinking 

process that includes iterative actions of asking, imagining, planning, creating, improving, and asking.  

 

Figure 1: Design thinking (Hughes et al., 2019) 

In a short-time activity like the one experienced by the children as they were working on their shelter 

task, we adjusted Hughes et al.’s (2019) design thinking cycle to reflect the design phases the children 

manifested in their collaborative work and created a three-phase process: Planning; Realization; and 

Testing and Adjusting.  

 

Figure 2: Interconnected cogs in makerspaces: Three-phase process 

Through this process, the children first planned their project, carried out their plan, and tested the 

product to later adjust it if it did not satisfy the requirements of size, sturdiness, and protective 

properties. However, we noticed that this process was not necessarily linear. Instead, it was oscillatory 

as the children were moving among the different phases planning, building, and testing and adjusting, 

which is why we chose to represent this process in interconnected cogs rather than a cycle. Our analysis 

was inductive as we observed repeated markers of rapturousness during the time the children were 

immersed in planning, realizing, and testing and adjusting the design and construction of their shelter. 

A sample of the data and results 

Analyzing the data as the children iteratively progressed through the inextricably linked cogs of 

planning, realization, testing, and adjusting in their makerspaces, we observed multiple combined 

Planning

Realization

Testing & 
Adjusting
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expressions of rapturousness, i.e., joy, excitement, thrill, satisfaction, and triumph over challenges. 

These were captured through the children’s gestures, intense focus on what their partners were 

suggesting, animated movement in the space they were using to build their shelters, and high levels 

of concentration that was evident throughout the project as they negotiated the design of the shape 

for their shelter, carried out the plan by cutting, adjusting, and manipulating objects, synchronized 

their actions and movements as they were working on building the structures, and testing and 

adjusting their structures through iterative cycles of trial and error.  

Motivated by the task of protecting their animal from high winds and heavy rain, the children began 

planning their design by deciding on the shape and size of their shelter. For instance, Figure 3 shows 

two students discussing and estimating the height of their shelter in relation to the size and height of 

their stuffed animal. The experience of rapturousness captured in this phase was marked by highly 

animated gestures. 

 

Figure 3: Planning phase in the three-phase process in makerspaces 

In the Realization phase, children built a prototype of their shelter. As they were trying to construct 

the walls of their shelter, we noticed multiple expressions of rapturousness when children exuberantly 

tested their structures and exploded with cheers of excitement when it worked as planned. During the 

process of realization, the children exhibited synchronized movements, decision-making processes 

through logic and explanations as they were making conjectures and discussing how to fasten the 

joints of the faces of their construction to make their construction more solid, and effective 

collaboration with their peers throughout the work. 

 

Figure 4: Children show excitement and engagement as they negotiate the shape of the structure 

When the children decomposed the problem that they were trying to figure out. They negotiated the 

meaning of the constraints that they needed to take into consideration. They communicated their ideas 

looking attentively at each other, using animated body language, and exuberant gestures as they made 

conjectures and tested them out. These processes of working on a real-life problem through iterations 

of decomposition and negotiation of meaning, we suggest, are conducive to creating conditions for 

rapturousness. As the children negotiated the design of their shelter, they were immersed in efforts to 

design a structure that will genuinely protect their stuffed animal. Figure 5 showcases the children’s 

intense concentration in their discussion. 
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Figure 5: Children immersed in the project as they negotiate the design of the shelter 

When the children checked if their respective constructions were solid, “waterproofed,” and 

withstanding against “wind,” they had to deal with several challenges. When they tested their 

construction, they were demonstrating efforts and capacity to adjust their structure by means of trial 

and error. Seeing their designed product becoming better, the children were visibly and audibly 

overjoyed as they could see their stuffed animal was protected and the shelter was solid. In post-

project interviews, students explicitly referred to this sense of joy (“fun”) coupled with perseverance 

as a factor contributing to their success. 

Student: It was kind of hard to make the Lego challenge thing and the shelter building, but 

it was still fun. 

 

 

Figure 6: Children excited to see their designed structures function properly 

Students also valued their joint work through collaboration, which helped them to successfully carry 

out their plan. Without it, they admitted, this kind of an experience may not have been possible. The 

following interaction between the second author and the children conveys, we believe, this message. 

Researcher:  Last question, if you teach me, what are the qualities I should have to be successful 

as you were in the building activities? The STEAM activities? 

Student 1: Maybe we should build with our partners and work together. 

Student 2: Same as [friend’s name]… that we should work together. 

Expressions of joint rapturousness that we observed were collaborative, shared, and adaptive. Such 

feelings were manifested throughout the data. Indeed, at the conclusion of the activity, one team 

enthusiastically joint efforts with other peers to transport their shelter for a lion to their classroom.  
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Figure 7: Children experience joint rapturousness while carrying their shelter to the exhibition 

Conclusion 

Our findings surface three contextually related and synergistically connected qualities in experiencing 

rapturousness through experiences that are experimental, collaborative, and creative. To wit, feelings 

of rapturousness are associated with students’ experiences in minimally structured, non-prescriptive, 

and openly creative contexts. Experimenting through negotiations of tasks and decomposition of the 

necessary against available tools, young children experience rapturousness through discovery, trial 

and error, and moving ahead toward a shared goal. They get emotionally attached to the task at hand 

(i.e., protecting their animal) (Vongkulluksn et al., 2018). In this context of experimental work, we 

suggest, rapturousness is a catalyst in students’ perseverance and staying on task (Freiman et al., 

2022). It is not only the experimental context that can organically generate expressions of 

rapturousness but also the collaborative negotiation of meanings and actions, working together 

through acts of synchronization of movements, and jointly making decisions while working 

collaboratively to achieve their goal (Cook & Bush, 2018). Rapturousness and creativity is the third 

pair in this set of findings. It is through imagining and creating prototypes, bringing ideas together, 

suggesting new solutions, and reinventing the use of objects when children move from one shape to 

another, try to intuitively adjust objects they design (Li et al., 2019), that children solve a problem 

(Polya, 1945). 

In particular, we attribute rapturousness to experiencing joy, satisfaction, and delight—

simultaneously. To wit, as students were immersed in the iterative activity of planning, realizing, 

testing, and adjusting, we noticed their facial expressions, intense concentration, wide smiles, and 

animated gestures and movements. We distinguished between rapturousness at the individual level, 

which is self-driven, responsive, and directional and rapturousness at the joint level, which is 

collaborative, shared, and adaptive. These were noticed through students’ verbal expression along 

with emphatic language, and expression of pride in what they engineered, constructed, and 

accomplished. Such feelings are an important part in the inter-, cross-, and transdisciplinary approach 

to mathematics (Robichaud & Freiman, 2022). 

This sense of the association between experimentation, collaboration, and creativity is also supported 

by data collected in higher grades. When asked about next plans in making, after having completed a 

chainmail of 300 3D-printed pieces, one Grade 8 student responded:  
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Student 1: I haven’t thought of my next big project yet…they just kind of come to me when I lay 

in bed, like it will just come to me like, oh my gosh I need to do this! It’ll be so cool! 

Like in bed trying to fall asleep, a project might come to mind and like this is going to 

be so cool I need to find a way to do that! 

In early school grades, young children learn through work on engineering challenges with imposed 

constraints and respond to problems as they emerge. Observing the children working on their 

engineering challenges, our study suggests that contexts such as makerspaces that spark students’ 

creative minds, can engage them in an experience of rapturousness through active exploration of 

new technologies where they can produce new ideas and design and prototype objects that are 

valuable for them. Facing challenges, staying on task, and working with others are skills that are 

necessary to the development of creativity, perseverance, and more generally, a well-rounded, 

inspired, and driven person. Makerspaces can potentially offer fertile ground to investigate the 

development of mathematical thinking and reasoning while supporting socio-emotional learning 

through engagement and perseverance, which are interlaced, we suggest, with mathematical 

rapturousness. Our study has investigated such work in a small number of schools with a small 

number of students and teachers. Given that socio-emotional learning has become an important strand 

in teaching and learning in general and in teaching and learning of mathematics in particular, 

investigating the concept of rapturousness can potentially shed much needed light onto the experience 

of joy, satisfaction, elatedness, and delight in learning. Our finding merits deeper study on a larger 

scale for educational change in mathematics.  
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Teaching geometry with a Human-Centered Design approach 

Gloriana González1 and Saadeddine Shehab1 

 

Three high school teachers engaged in a virtual lesson study cycle to plan and teach a research 

lesson. The lesson required students to apply a Human-Centered Design (HCD) approach to 

mathematical problem-solving. Analysis of the pre- and post-lesson discussions answered the 

question: How do geometry teachers who are participating in a lesson study cycle use the Human-

Centered Design framework to plan and teach a problem-based lesson? The findings show that the 

teachers made references to HCD in two ways: (1) as content in the research lesson’s learning 

objectives for their students, and (2) as a practice for the teachers to develop the research lesson. 

The study has implications for engaging teachers in identifying authentic contexts for students to 

experience geometry problem-solving. 

Keywords: Human-Centered Design, geometry, high-school math, lesson study, problem-based 

instruction.  

 

Introduction 

Calls for changing the high school math curriculum in the U.S. emphasize the use of authentic 

problems (NCTM, 2018). Geometry instruction can provide a special opportunity for students to 

apply math to real-world scenarios. Our study analyzes geometry teachers’ engagement in creating 

and implementing a high school problem-based geometry lesson using the Human-Centered Design 

(HCD) framework (Lawrence et al., 2021). The framework emphasizes empathy and iteration for 

identifying and solving authentic problems. Three U.S. high school geometry teachers participated in 

a lesson study cycle following four steps as specified by (Lewis et al., 2006): (1) studying 

instructional materials, (2) planning a research lesson to observe student thinking, (3) teaching the 

lesson by one team member in a 9th grade geometry class, and (4) reflecting on evidence of student 

thinking during the lesson using videos from the lesson. Our research question is: How do geometry 

teachers who are participating in a lesson study cycle use the HCD framework to plan and teach a 

problem-based lesson? We describe how the teachers relied on the HCD framework to attain specific 

learning goals by designing and implementing a research lesson situated in the context of graphic 

arts. The context is intended to foster students’ creativity in applying geometric concepts related to 

circles. Additionally, students had to apply math in design processes centered around stakeholders’ 

needs and constraints, key aspects of the HCD framework. The teachers’ lesson study engagement 

exemplifies their key role in embracing holistic and interdisciplinary approaches to education. 

Theoretical Framework 

Human-Centered Design (HCD) is a problem-solving approach where people use design thinking 

processes and tools to identify the unmet need of a population to develop relevant and creative solutions 

collaboratively and iteratively (Brown, 2008). People using HCD rely on empathy and iteration (Brown, 
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2008). When using the HCD approach, designers focus on understanding and collaborating with all 

stakeholders to identify problems, explore solutions, create prototypes, test the prototypes, and refine 

the solutions in iterative cycles (Brown, 2008; Brown & Katz, 2011; Dorst, 2011; Zhang & Dong, 

2008). Designers implement practices such as interviewing people, identifying themes, communicating 

ideas, creating prototypes, and developing plans to bring final designs to the market (IDEO, 2015). 

Figure 1 illustrates an HCD framework that summarizes Human-Centered Design spaces and processes 

(Lawrence et al., 2021). The framework has five HCD spaces (Understand, Synthesize, Ideate, 

Prototype, Implement) and each space is composed of four processes.  

 

Figure 1: The Human-Centered Design framework (Lawrence et al., 2021) 

Teachers are designers of learning experiences and instructional materials (Henriksen & Richardson, 

2017). They can utilize the HCD processes shown in the framework to design and prototype students’ 

learning experiences and instructional materials. Moreover, integrating HCD in problem-based 

mathematics lessons can positively influence students’ learning. During these lessons, students can 

learn and apply mathematical concepts in authentic problem-solving contexts that feature multi-

disciplinary collaborations. Students can also learn about and engage in HCD processes that can help 

them develop 21st century skills such as collaboration and creativity (Goldman et al., 2012; Koh et 

al., 2015). Prior research by Bush et al. (2018, 2020) in a 4th grade math classroom shows that 

engaging students in design thinking results in their positive attitudes towards math. The students 

designed a prosthetic arm for a student to be able to use a keyboard. In doing so, the students created 

prototypes that applied math concepts and procedures while also developing empathy. Studies such 

as the ones by Bush and colleagues provide examples of how an HCD approach can leverage students’ 

knowledge and experiences in math classrooms.   

In this study, we explore how three geometry teachers used the HCD framework in the context of a 

lesson study. The lesson study team designed and implemented a problem-based geometry lesson that 

engaged students in applying properties of circles to generate a prototype of a restaurant logo that 

meets stakeholders needs and constraints.  

Methods 

The study applies a design-based research methodology to design, implement, and evaluate four 

lesson study sessions (Easterday et al., 2018; McKenney & Reeves, 2012). Three high school 

geometry teachers were recruited to participate in a lesson study cycle during the spring 2022 

semester. The teachers, all from public schools in a Midwestern state in the U.S., had never 

participated in lesson study before. All the teachers had prior experience teaching: Celia (13 years), 
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Coral (2 years), and Dustin (24 years). We use pseudonyms for the study participants. The authors of 

this paper facilitated the sessions. To demonstrate HCD processes and foster creativity, the teachers 

studied prototypes of problem-based geometry lessons (see González & Deal, 2016). The prototypes 

were developed as part of another research study (González et al., 2023) and adapted by the authors 

to include HCD elements. The four sessions (1.5 hr/session) were conducted virtually using Zoom, 

Google Slides, and Google Forms. The online sessions allowed the teachers to participate after school 

by eliminating traveling time to a central location. The teachers could opt to have the camera on or 

off during the sessions and made use of the “chat” feature online. The availability of online platforms 

afforded the team to simultaneously edit the forms in real time when constructing the plan for the 

research lesson. Additionally, the online sessions allowed us to overcome the challenges of live 

observations since schools had visiting restrictions due to the pandemic. Nevertheless, the online 

sessions posed some limitations for data collection such as not having many opportunities for 

informal conversations, which are crucial for establishing rapport among team members. 

Additionally, the videos shown in the post-lesson discussions restricted the point of view to the way 

the first author positioned the camera when visiting the classroom. The research team selected the 

video clips for the post-lesson discussions. These decisions about where to position the camera and 

what videos would be discussed provided a different experience for the lesson study team than when 

conducting live observations. At the same time, post-lesson discussions with video can allow teachers 

to attend to student thinking (González & Skultety, 2018). During the first session, the team studied 

instructional materials and was introduced to the HCD framework. During the second and third 

sessions, the team planned the research lesson, deciding to focus on properties of circles (math 

content) and iteration (HCD process). The first author videotaped the research lesson in Dustin’s 

geometry classroom. During the fourth session, the team analyzed videos from the lesson focusing 

on identifying evidence of students’ use of properties of circles and iteration.  

The sessions were video recorded. We created a timeline parsing the session into intervals, which is 

a unit of analysis noting changes in the activity structure (Herbst et al., 2011). In each interval, we 

identified (1) references to the HCD framework, (2) who made the reference (the teachers vs. the 

facilitators), and (3) the purpose or effect of the reference. For example, a reference to “empathy” 

by a teacher may have the effect of changing the problem’s introduction so that students feel 

empathy towards stakeholders during the planning step. Overall, the HCD framework specifies 

empathy and iteration as two key elements of a design challenge (Brown, 2008). We sought to 

understand how the teachers referred to these elements of the framework during the lesson study 

cycle. We coded independently a random sample of 20% of the total 75 intervals. However, we had 

difficulties achieving reliability in the first three rounds (60%, 53%, and 67%). After each round of 

coding, we met to resolve disagreements. After the third round, we developed a coding scheme for 

the references to the HCD framework (Table 1). We reached reliability in the fourth round of coding 

(86%) and the first author coded the remaining 20% of the intervals. 
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Table 1: Codes for references to the Human-Centered Design framework in lesson study discussions 

Code Description 

Yes The facilitators or teachers make an explicit reference to the HCD framework or one of its processes or 

practices for the purpose of integrating HCD in the geometry problem or using HCD practices to engage in 

the lesson study cycle. 

No The interval does not include any explicit reference to the HCD framework or one of its processes or 

practices. 

 

Findings 

We introduce the findings in three parts. First, we provide an overview of the research lesson and the 

lesson study cycle to give the readers a sense of the context for the study. Second, we discuss the 

references to the HCD framework. Finally, we talk about the purpose of the references. 

Overview of the lesson study cycle and the research lesson 

In the first session, the teachers examined three prototypes of geometry lessons using the HCD 

framework prepared by the research team. Table 2 includes a summary of the lessons, which provided 

the teachers with ideas that they used to create a research lesson in the second session. They decided 

to combine the math content of circles and geometry constructions in the “Designing an Analog 

Watch Prototype” and the context of “Designing a New Restaurant Logo.” The rationale for the 

selected math content was that students had prior knowledge of constructions. The teachers expected 

the students to apply properties of circles when creating their design. The rationale for the context 

about making a logo for a restaurant was the authenticity of the context, students’ love for food, and 

the opportunity for students to be creative. In terms of HCD, the teachers decided to focus on 

iteration. Specifically, they wanted the students to create and refine a prototype by incorporating 

peer feedback. The teachers critiqued the framing of the “Designing a New Restaurant Logo” lesson, 

which involved a fictional character, Dakota, who worked at an advertising agency. They stated that 

the students in the research lesson should not be living vicariously through Dakota and instead could 

be positioned as experts in the problem. The subsequent discussion led the teachers to frame the 

problem as one where the students were helping a small business owner of an existing or imaginary 

local restaurant. The teachers hypothesized that the students would be more invested with this new 

context and show empathy by relating to local needs in the community. Therefore, even though the 

teachers focused on iteration, they embedded empathy in the framing of the problem, an important 

characteristic of HCD. 
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Table 2: Prototypes of geometry problem-based lessons with Human-Centered Design objectives 

Title Geometric 

Concepts 

Human-Centered Design Goals 

Occasion 

Problem 

Designing 

an Analog 

Watch 

Circles and 

geometry 

constructions 

· awareness of HCD’s problem-

solving approach. 

· reliance on connecting with 

people; 

· understanding of users’ needs 

as well as companies’ 

constraints; 

· use of math knowledge to 

make decisions on what 

qualifies as a feasible idea; 

prototyping a design. 

Wristwatches are back! A new company is 

asking for proposals to do a unique 

production of wristwatches. They launched a 

competition, and the winner of the best 

design will earn $5 million dollars plus sale 

royalties. 

As one of the participating design teams you 

decided to approach the task using the 

Human-Centered Design approach. You 

started your challenge by exploring the 

problems through talking to a specific 

population. You learned from interviews 

with millennials that many of them are 

interested in wearing analog watches (yes, 

the ones that are not digital). 

Designing 

Backpack 

Patterns 

Rigid 

transformations 

and triangle 

congruence 

 

· awareness of the role of 

constraints; 

· consideration of users’ needs 

as well as executives’ 

constraints; 

· use of math knowledge to 

create designs that meet the 

company’s constraints. 

A backpacks company is trying to include its 

customers in the design process by giving 

them the option to provide their initials when 

they buy a backpack so the company can use 

it to create various patterns that can be 

tailored to the inside and outside of the 

backpack. To do so, the company launched a 

design contest, and the winner will get their 

design featured in their first advertisement. 

Designing 

a New 

Restaurant 

Logo 

Rigid 

transformations 

and congruence 

 

· consideration of users’ needs 

as well as executives’ 

constraints; 

· use of math knowledge to 

make decisions on what 

sketches meet the executives’ 

constraints; 

· use of sketches to collect and 

integrate feedback; 

· appreciate sketching when 

prototyping. 

Dakota works at an advertising agency. She 

and her team are currently working on 

designing a prototype of a logo for a new 

restaurant. They are putting together some 

sketches that meet the executives’ 

constraints and they can use to communicate 

their ideas to the executives. 

 

 

References to the HCD framework 

After the introduction to the HCD framework in session 1, the teachers made references to the 

framework in at least half of the intervals. Table 3 shows the number of intervals with references to 

the HCD framework by the teachers or the facilitators. This finding demonstrates that the teachers 

appropriated the framework and used it to plan the lesson in sessions 2 and 3. Additionally, the 

teachers referred to the framework during session 4 when examining videos of students working on 
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the problem. The facilitators made references to the framework in more than half of the intervals in 

all the sessions and diminished the references over time. It is possible that by making less references 

to the HCD framework, the facilitators allowed for teachers’ agency in identifying connections to the 

framework by themselves. 

Table 3: References to the Human-Centered Design framework 

Session 

No. 

Lesson Study 

Step 

Total 

intervals 

Intervals with 

HCD references 

Facilitators’ HCD 

references 

Teachers’ HCD 

references 

1 Study 17 11 11 (100%) 1 (9%) 

2 Plan 18 13 12 (92%) 9 (69%) 

3 Plan 21 12 10 (83%) 6 (50%) 

4 Reflect 19 11 7 (64%) 7 (64%) 

 

Purpose of the references to the HCD framework 

We found two types of references to the HCD framework: HCD as content and HCD as a practice. 

On the one hand, the teachers’ references to HCD when planning the research lesson aimed at 

students’ understanding of geometry by applying the HCD framework. Therefore, the references to 

the HCD framework had the purpose of identifying ways to incorporate the framework into the 

research lesson. As stated earlier, the teachers decided to promote students’ use of iteration in making 

prototypes of logos. They also embedded empathy in their framing of the problem for the students. 

In session 4, the teachers identified evidence of students’ use of iteration when watching and 

discussing videos of the research lesson. On the other hand, the second type of reference pertains to 

teachers’ engagement in HCD themselves by understanding, planning, and reflecting on the research 

lesson. The teachers used prototypes of lessons for planning. The research lesson itself could be 

viewed as a prototype for testing ideas about using HCD with students. In the following sections we 

show some evidence of these two themes from the data. 

HCD as content 

We selected some examples of discussions across sessions to illustrate how the teachers referred to 

HCD as content. In session 2, when planning the research lesson, the team considered ways to 

incorporate iteration as students worked in groups of three (trios). Reference to “iteration,” 

“empathy,” and “prototyping” are noted in bold. 

Celia: Okay, this could be a terrible idea. But what I’m thinking about right now is, as far 

as iteration goes, and if there would be enough time for this. So, let’s say we give 

them, I don’t know, 10 minutes to say, “Okay, you’re in your trios, come up with 

the best logo that you can in 10 minutes.” And then, there was in the description of 

the task, it says, “Finally, propose your sketch for at least two other groups. Collect 

their feedback and make at least one modification.” I wonder if either in addition to 

it, and instead of that, say, “Okay, at the end of the 10 minutes, you’re passing your 

logo off to the next group.” And like, that’s their starting point. And their goal then 

is to improve the logo that you started. And we do another 10 minutes, or maybe 

they don’t need 10 minutes this time, because they’re not starting from scratch. And 
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now they get, I don’t know, five minutes, six minutes, whatever the time is, and 

they have to improve it. And then it’s like, “Okay, we’re going to do one more 

pass.” And, so now they get this third logo from a different group, and they have 

to improve it one more time. I don’t know. I don’t know if we have enough time 

for that. But... 

Dustin: I like that idea. I’d be okay with doing it once. I don’t know. Once they get the 

design that has been improved upon once, they might get bogged down in, “Well, 

what can I do to improve this? Because it’s already been improved, once.” But to 

go back to Gloriana’s question like, what’s the number one thing we want to get 

out of this from the Human-Centered Design perspective? I could see it being just 

looking at the slides Saad has up, “ways to empathize with stakeholders,” like 

you’re trying to get feedback from multiple people, whether that’s another trio in 

the room or I’m totally open to having them do a little bit of market research the 

night before, where they talk to family or friends about what makes a good logo. 

And then they bring that into the room that day. So, it doesn’t take up time other 

than them dialoguing with the other two members of their trio. I think that would 

be a fascinating like, on-ramp to the problem. And they wouldn’t know fully what 

we’re doing. But they could probably surmise a little bit that they were going to be 

doing something with logos that day. I think it’d be cool for them to just ponder, 

“Okay, what makes a good logo an effective marketing ploy?” 

Coral: So, I was thinking about, you know, when you said to pass it and have them make 

improvements, that to me fits in with the ways to prototype a new design process. 

Because in the real world, once you have a design, you often pass it on to your 

superiors or peers for them to make adjustments. And then kind of like, add on to 

what you already have. So, I feel like that would kind of connect the students to 

what happens in the job force, whether it’s marketing, engineering, or anything of 

the sort. 

In the discussion, the team debated the practical issue of how many iteration cycles to incorporate in 

the lesson. The team decided that students would ask another trio for feedback once, to avoid getting 

“bogged down.” At the end, Coral stated that prototyping and incorporating feedback through 

iteration is an authentic practice in many job-related settings, thus adding authenticity to the task. In 

session 3, the team refined the activity so that students would perform one iteration in relation to other 

lesson activities. 

Dustin: Are we going to have enough time guys to do it with two groups? I thought I raised, 

I’m just concerned like—I have in my mind, I have written on a piece of paper over 

here, like okay, we need this many minutes probably to do the design, this many 

minutes to pitch it to a group. I’m just trying to fit everything in. Can we get them 

to experience the iteration part of it just by having them run it by one group? Or 

I suppose now...no, never mind. Scratch that, that was my opinion. So. 

Celia: I think just having one, one group, you know, that they have look at it and give 

feedback. I think that’s fine. Especially trying to consider how much time there is. 

I mean, ideally, would they be able to get more than one group? I think if time 
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wasn’t an issue, like yeah, the more the better, right? But trying to do what’s 

feasible in one class period, probably just one is good. 

There were four objectives for the research lesson and two of them included prototyping and iterating: 

“Students become aware of the role of prototyping in Human-Centered Design” and “Students use 

sketches to collect and integrate feedback.” The other two objectives made references to empathy: 

“Students understand that Human-Centered Design considers users’ needs as well as executives’ 

constraints.” “Students use mathematical knowledge to make decisions on what sketches meet the 

executives’ constraints.” 

During the lesson, the students used properties of circles to create a restaurant logo. Each trio made 

a prototype of the logo, received feedback from a peer who came to talk to the group, and then 

modified their logo. Figure 2 shows an example from a worksheet. The first prototype of the logo for 

a pizza restaurant had a comet inside of the circle. After receiving feedback, the second prototype 

included the comet as a tangent. Figure 3 shows their final prototype, which they presented to the 

class at the end of the lesson. The trio created a logo for a hypothetical restaurant, “Shooting Star 

Pizza.” Their intention was to show 1 circle and its tangent, and use 2-5 colors, as established by the 

class in the initial discussion. The changes to the logo integrate the tangent to the circle as part of the 

design, minimize the crust, and refine the drawing of the tangent. 

 

Figure 2: A group’s showing a prototype and its modifications after one iteration 
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Figure 3: Final prototype of a logo for “Shooting Star Pizza” 

In session 4, during the post-lesson discussion, the teachers identified students’ engagement in the 

iterative process of creating a logo. They used the example of another trio that had been using a circle 

to create a logo for a taco restaurant.  

Dustin: I will take the blame for rushing their development of the second iteration a little 

bit and tensions were flaring there at the end [laughs]. 

Gloriana: It worked, it worked. 

Celia: I did appreciate though how the one student—it seemed like who like presented the 

first iteration to the other group and then was bringing back the feedback—she 

had said they, you know, they said to make the “B” more rounded. “It looks like 

teeth,” they said. So, like sharing that feedback. And to me, like taking the 

feedback to then make the second iteration more visually appealing based on that 

feedback. I appreciated that.  

The feedback was that the lettuce coming out of the taco and the letter “B,” which was used to write 

the name of the restaurant in the logo, resembled teeth. The students changed the visual in response 

to the feedback. Celia noticed that the iterative process allowed the students to incorporate the 

feedback and improve their logo. Overall, the teachers used the HCD framework as content during 

the lesson study cycle. The examples show how the teachers integrated iteration in the research 

lesson’s objectives and activities. Additionally, the teachers identified evidence of students’ 

engagement with iteration during the research lesson.  

HCD as a practice 

We selected some examples of discussions across sessions to illustrate how the teachers referred to 

HCD as a practice. In session 1, the teachers empathized with the students as they examined and 

discussed the three prototypes of the geometry problems. The bolded sections in the examples show 

that the teachers took the students’ perspective as they reflected and commented on the prototypes.  

Dustin:  I was still in the process of reading the analog watch prompt. But I felt like at 

least two and a half of the…the situations were really strong from an HCD 

perspective, really walking kids through the interaction and the interpersonal 

skills needed to make something happen in the real world. And so, I saw that 

shining through loud and clear in all the models. 
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Coral:  Yeah, same, like trying to read it as a student, I think that the way that each of 

these tasks are introduced kind of gets them in the mindset of, “Oh, yeah. 

Okay, this is why we’re doing this.” Like they can see it as realistic, they can 

see it as having a purpose, not just, “Oh, it’s another math problem,” but 

actually the application. 

Celia:  Yeah, I was going to say, a lot of the time kids ask me, like, “When would I use 

this in the real world?” And so, each of these problems has, you know, an 

impact on…on some career, especially in design, because a lot of times kids 

will often say, “Okay well, I can see how this would be useful like in engineering, 

or subjects in STEM, but how would I, how would it come into play if I don’t 

want to do that?” So, I thought that was really neat. 

After discussing the three prototypes of geometry problem-based lessons, the teachers demonstrated 

some synthesis and ideation practices to converge towards the restaurant logo problem targeting one 

math standard, circles as a geometry topic, and iteration as an HCD objective. The examples from 

session 2 show how Dustin started to narrow down the math standard for the lesson.  

Dustin:  I would say if I had to pick one, and I’m open to this everyone, it would be the 

first standard listed in the watch problem. I think that’s a nice blend of 

structure and open-endedness.  

Similarly, in the same session, Coral identified prototyping as the HCD objective since the problem 

already required students to empathize. 

Coral:  Yeah, I agree, I would say the ways to prototype in this design project, I think 

like, there is a sense of the empathy just from the problem statement itself, like 

you’re asked to make something for someone else. So, I think since that’s 

already kind of integrated with the project, iteration would be a nice thing to 

focus on.  

Conclusion 

In our study, we found that geometry teachers can practice HCD to collaborate when designing 

problem-based geometry lessons. They can also integrate HCD elements and processes in geometry 

problems via lesson study. Our findings indicated that over the course of four online sessions, the 

lesson study team used HCD processes to design and implement a lesson with a geometry problem 

that encompassed both geometry and HCD learning objectives. It seems that the use of the HCD 

framework during lesson study empowered the teachers to collaborate and design an innovative 

geometry problem. The problem engaged geometry students in applying properties of circles and 

iteration to design a restaurant logo. The students had the agency of selecting circle properties to 

create their design. The constraints of the problem fostered their creativity by specifying elements to 

be included in the design challenge. The problem’s context allowed students to develop some 

empathy and envision how to meet their stakeholders’ needs with their design. The teachers 

appreciated seeing that the students selected a geometric property for their design and refined their 

integration of that property in their logo after building their prototype and receiving feedback from 

their peers. The iterative cycle within the HCD framework supported students’ application of circle 

properties to an authentic setting of graphic design. In future studies, we would like to continue to 
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explore how the HCD practices can empower teachers to design innovative lessons set in authentic 

contexts for students to enjoy and appreciate the beauty and relevance of math. 

Acknowledgment 

This research was supported by a Campus Research Board Award from the University of Illinois 

Urbana-Champaign granted to the first author. Thanks to Emma Doyle who as part of the research 

team transcribed data and assisted with the selection of videos for the post-lesson reflection. 

References 

Brown, T. (2008). Design thinking. Harvard Business Review, 86(6), 84–94. 

Brown, T., & Katz, B. (2011). Change by design. Journal of Product Innovation Management, 28(3), 381–383.  

Bush, S. B., Karp, K. S., Cox, R., Cook, K. L., Albanese, J., & Karp, M. (2018). Design thinking 

framework: Shaping powerful mathematics. Mathematics Teaching in the Middle 

School, 23(4), 1–5. 

Bush, S. B., Mohr-Schroeder, M. J., Cook, K. L., Rakes, C. R., Ronau, R. N., & Saderholm, J. (2020). 

Structuring integrated STEM education professional development. The Electronic Journal for 

Research in Science & Mathematics Education, 24(1), 26–55. 

Dorst, K. (2011). The core of ‘design thinking’ and its application. Design Studies, 32(6), 521–532.  

Easterday, M. W., Rees Lewis, D. G., & Gerber, E. M. (2018). The logic of design research. Learning: 

Research and Practice, 4(2), 131–160. 

Goldman, S., Carroll, M. P., Kabayadondo, Z., Cavagnaro, L. B., Royalty, A. W., Roth, B., Kwek, S. H., & 

Kim, J. (2012). Assessing d.learning: Capturing the journey of becoming a design thinker. In H. 

Plattner, C. Meinel, & L. Leifer (Eds.), Design thinking research: Measuring performance in 

context (pp. 13–33). Springer.  

González, G., & Deal, J. T. (2019). Using a creativity framework to promote teacher learning in 

Lesson Study. Thinking Skills and Creativity, 32, 114–128. 

González, G., Kim, G.-Y., & Rinkenberger, C. (2023, April 13–16). Geometry teachers’ perspectives 

on problem-based lessons situated in arts-based contexts [Paper presentation]. American 

Educational Research Association Annual Meeting, Chicago, IL, United States. 

González, G., & Skultety, L. (2018). Teacher learning in a combined professional development 

intervention. Teaching and Teacher Education, 71, 341–354. 

Henriksen, D., & Richardson, C. (2017). Teachers are designers: Addressing problems of practice in 

education. Phi Delta Kappan, 99(2), 60–64. 

Herbst, P., Nachlieli, T., & Chazan, D. (2011). Studying the practical rationality of mathematics 

teaching: What goes into “installing” a theorem in geometry? Cognition and Instruction, 

29(2), 218–255. 

IDEO (Firm). (2015). The field guide to human-centered design: Design kit. IDEO. 

Koh, J. H. L., Chai, C. S., Wong, B., & Hong, H.-Y. (2015). Design thinking for education. Springer.  

Lawrence, L., Shehab, S., Tissenbaum, M., Rui, T., & Hixon, T. (2021, April 8–12). Human-Centered 

Design Taxonomy: Case study application with novice, multidisciplinary designers [Poster 

presentation]. American Education Research Association Virtual Conference. 

Lewis, C., Perry, R., & Murata, A. (2006). How should research contribute to instructional 

improvement? The case of lesson study. Educational Researcher, 35(3), 3–14. 

McKenney, S., & Reeves, T. C. (2012). Conducting educational design research. Routledge. 

National Council of Teachers of Mathematics (NCTM). (2018). Catalyzing change in high school 

mathematics. NCTM. 

Zhang, T., & Dong, H. (2008). Human-centred design: An emergent conceptual model. 

https://bura.brunel.ac.uk/bitstream/2438/3472/1/Fulltext.pdf

https://bura.brunel.ac.uk/bitstream/2438/3472/1/Fulltext.pdf


 113 

Mathematics for multispecies’ flourishing: A case for kolams 

Olivia Lu1, Sreedevi Rajasekharan2 and Steven Khan2 

 

We have been developing the framework of Mathematics for multispecies’ flourishing, which is an 

ethical and enactivist approach that recognizes the right of all species to flourish through the human 

study of mathematics and encourages respectful partnership between humans and other species (Tran 

et al., 2020). Kolam designs are geometrical shapes typically represented with dots, which are 

connected to each other through straight lines, loops, and curves. We interrogate some of the 

literature on kolams in mathematics education (Ascher, 2002; Chahine & Subramanian, 2017; 

Chenulu, 2007), which typically draws on ethnomathematical or culturally responsive perspectives 

(D’Ambrosio, 1990).  

We revisit and resituate kolam drawing in mathematics education through a perspective of being for 

multispecies’ flourishing (Khan, 2020) and using the language of variation theory (Lo, 2012; Marton, 

2014), we argue that the external and internal horizon of the object of learning need to be 

continuously placed in relation to each other. This perspective on the kolam drawing practice serves 

as a pedagogical pivot (Ellsworth, 2014) that keeps the cultural and ecological significance always 

close at hand and in mind even as one deepens their mathematical exploration or appreciation. Our 

work responds to our wonder, “how do we create opportunities for passionate immersion and 

meaningful engagement with other cultures in ways that privilege a mindset of partnership and 

kinship over one of resource extraction and capitalization?” 

Keywords: Mathematics education, multispecies’ flourishing, ethnomathematics, variation theory, 

kolams. 

 

Introduction 

In this theoretical paper, we argue that Variation Theory (VT) and Ethnomathematics (EM) form a 

necessary and mutually enriching partnership that simultaneously advances multiple goals such as 

those aligned with equitable outcomes for diverse learners, cultural relevance, cultural respect, and 

humanizing mathematics education. We argue that the external horizon of the object of learning is a 

critical aspect of the ongoing evolution of relevance and motivational frame for learning 

mathematics. The lives of mathematical objects of learning that are embedded in cultural practices 

should maintain a harmonious relationship between both their ongoing cultural aspects and 

mathematical aspects. Variation theory also provides an important frame for the design of 

systematically sequenced and structured patterns of critical discernments that attends to the 

pedagogical dimension of ethnomathematics within school and other settings. We illustrate our ideas 
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through the example of the practice of kolam drawing, which originates in Tamil Nadu, India, and 

has been previously explored in the EM literature.    

Steven: As I have explored the works of variation theory, I see the potential and importance 

to intertwine these concepts into the introduction of cultural learning within 

mathematics classrooms. I hope that in mathematics, the cultural significance gains 

traction, not only respectfully, but in a manner that supports and promotes students’ 

learning. If variation theory can offer openings for students’ ways of learning and 

knowing, there should be opportunities to connect their learning of mathematics 

activities beyond the classroom.   

Olivia: My experience with kolam drawings started as a young bride whose husband worked 

in a small town called Karur in Tamilnadu, India. It was customary for the ladies of 

every Tamil household to get up early in the morning, sweep the front courtyard of the 

house with coconut palm leaf stalk brooms (recyclable) and sprinkle water to purify 

the swept area of the courtyard before drawing the traditional kolam designs. The 

purpose of sprinkling water is to get the rice flour stuck to the ground. People who 

have cows at home used to mix cow dung to the water and cement the front courtyard 

with the mixture before putting the kolams. In Kerala, we have the tradition of making 

beautiful patterns on the floor, aniyal (decoration) as they are known, the material 

used is wet rice ground and added with resin from chopped okra to thicken the paste.  

Kolams are drawn in front of Hindu households as a sign of welcome. I took lessons on kolam 

drawings from my friends, village women who lacked the opportunity to pursue higher education 

because of their gender and family traditions. Kolam drawings require mental concentration and 

prowess and are well connected with self-discipline (Personal experience; Ascher, 2002). I used to 

practice the kolam drawings many times on paper before putting them on the floor. I remember 

putting the dots in the sequence of   1-3-1, 1-3-5-3-1, 1-3-5-7-5-3-1 and this is done in precision 

without any ruler.  

Sreedevi: I have used sand drawings including kolams in work with elementary teachers for 

more than a decade (Khan, 2010). Teachers are always surprised at how much effort 

they take to make even simple images that are aesthetically pleasing and feel great 

satisfaction when they make increasingly intricate patterns. I am always careful to try 

to situate these traditions within their contexts and cultures. However, in math classes 

and the literature where cultural artifacts or practices form the basis for instruction, 

I have often found the cultural aspects to be rapidly dropped and never returned to as 

the mathematics takes precedence. 

Steven: The work of teaching mathematics in schools is complex and challenging (Potari, 

2012). To ambitious goals of high achievement, mathematical proficiency and equity 

for all learners, have been added goals related to humanizing, cultural 

responsiveness, and socio-emotional regulatory competence based on emerging 

consensus around how people learn. This consensus foregrounds the critical and 

necessary roles of contexts and cultural situatedness (National Academies of Science, 

Engineering & Medicine, 2018). At the same time, research on theories of learning 
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reveal swarms of discourses (Davis & Francis, 2021) that intersect, interact, evolve, 

compete for attention, and influence approaches to, and beliefs about effective 

teaching.  

A critical convergent insight from neuroscience, economics, and education research is that attentional 

working memory (bandwidth scarcity) is a critical (non-volitional) limiting factor for learning (and 

learning to teach). This can be severely attenuated by factors such as physical, emotional, and 

economic stress due to poverty, racism, trauma, and marginalization (Mullainathan & Shafir, 2014; 

Verschelden & Pasquerella, 2017) but can be ameliorated by careful design considerations such as 

limiting unnecessary distractors, chunking into smaller pieces, and providing immediate corrective 

or evaluative feedback within a non-judgmental (growth-oriented) environment. This environment 

offers repeated and increasingly elaborative experiences, which elicits positive affective responses 

(see Figure 1). These findings are consistent with the design principles used in some types of digital 

games and puzzles (Khan & Rudakoff, 2019), some mathematics curriculum resource partners 

(Preciado-Babb et al., 2015) as well as Universal Design for Learning (UDL) frameworks (Lambert, 

2021; Takacs et al., 2021).   

 

Figure 1: Three networks influencing UDL principles—affective, recognition, strategic (Takacs et al., 

2021, p. 33) 

In this paper, we bring together our understanding of the curricular and pedagogical design 

implications of variation theory (VT) and ethnomathematics (EM) in attempting to create a novel 

partnership between them that we believe will be useful to pre-service and in-service teachers who 

seek to include the cultural life-worlds of learners and their community into their classrooms in 

meaningful, impactful, and respectful ways while also advancing and remaining consistent with 

effective principles for learning mathematics. Our literature search and review found many articles 

over the last three decades that separately drew on ethnomathematics or culturally responsive 

pedagogical practices and those that drew on variation theory. We could find no work that explicitly 

partnered the two frameworks—though we acknowledge that in the description and design of some 

classroom ethnomathematical activities, we saw evidence of practices consistent with the broad 

principles of variation theory. Likewise, in some work drawing on variation theory we saw evidence 

of the wider cultural context of learners and communities being drawn in without explicit reference 

to ethnomathematics or culturally responsive pedagogy.    
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Why partnering? 

The idea of partnering draws on work of the Math Minds project (Davis et al., 2020) as well as work 

on multispecies’ flourishing (Khan, 2020) both of which share an emphasis on an enactivist 

understanding of structural coupling and owe debts to indigenous ways of knowing, thinking, and 

being in relation to the other-than-human relatives—including mathematical concepts. The former 

involves work with teachers on partnering with a well-raveled learning resource that is consistent 

with their five principles of learning to improve teaching. They argue and present examples from 

JUMP Math lessons that systematically use structured and clearly sequenced patterns of variation of 

critical discernments that are sustained over multiple lessons and years. The work, however, presents 

as acultural and is focused on critical discernments of mathematical concepts and associated linking 

logics.   

Our work starts from a position of cultural responsiveness (Matthews et al., 2022; Seda & Brown, 

2021) and is consistent with recent findings from the National Academies of Sciences (1994) on How 

People Learn that contexts for learning matter, are essential for learning, more so for students from 

non-dominant cultures in education systems, and are not merely a backdrop or prop for learning. We 

take a more critical decolonial, anti-racist and eco-communal approach, which attempts to trouble 

capitalist-colonialist, essentialist understanding of ‘resources’ as something that are just ‘there’ for 

the taking and exploitation for individual or corporate profit. Indeed, the language of ‘resource’ in 

education is one that we find especially problematic in the context of the Truth and Reconciliation 

Commission of Canada (TRC) Calls to Action and moves to decolonize the University/Curricula.  

Intentionally coupling EM with VT allows us to develop a strategy for working towards the ambitious 

goals of modern curricula and schooling in ways that feel honest, have a high probability of success, 

and, which honours the dignity and integrity of the learners we work with, the communities, heritages, 

and cultures to which they belong and contribute, and, who too must be invited into renewed vivifying 

partnerships with schools and education as they continue to transform each other. Thus, extending 

the work of Math Minds, we propose keeping cultural ideas central and find ethnomathematics a 

valuable partner along with variation theory in thinking about the design of learning experiences. 

Note, there are other potential theoretical and pedagogical partners with either member of this 

coupling, but they are not our focus in this paper.  

As variation theory concentrates on the cognitive and design components and ethnomathematics 

focuses on the sociocultural components and human practices in multispecies worlds, we can couple 

aspects of working memory (from variation theory) with ethnomathematics and/or the cultural 

connections of ethnomathematics with variation theory. We will provide an example of kolam 

drawing to focus attention on how the use of variation theory and ethnomathematics might inform 

mathematics education and teacher practice. 

A brief introduction to ethnomathematics 

Following Lubis et al. (2019), we take Ethnomathematics (EM) as expressing the reciprocal 

relationship between mathematics and/in culture (Lubis et al., 2019). It can be considered a 

“culturally specific practice performed by one cultural group seeking to make sense of another, often 

by reference to a specific conceptualization of mathematics” (Peralta, 2020). Katz (1994) pointed out 

that mathematical ideas have grown out of the needs of various cultures around the world, and it is 
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important that students of Western nations are exposed to the mathematical practices in different 

cultures. The current Eurocentric challenges in mathematics education can be relieved through 

applications of ethnomathematics, as ethnomathematics creates opportunities to recognize the 

contribution of non-Western approaches to mathematics and to explore mathematics beyond the 

traditional framework of mathematical thinking (Hall, 2007). People all over the world have 

developed several mathematical methods consistent with their interests, religious beliefs, aesthetic, 

or recreational goals/purposes. Some cultures use arts and designs rich in symmetry, proportions, and 

transformations as part of their daily ritual, and kolam is one such example.  

Ethnomathematics helps students understand the cross-curricular applications and identify mathematics 

in real-life situations. In the mathematics education context, ethnomathematics can introduce 

mathematical perspectives that focus on bringing diversity into the classroom through local knowledge 

and the idea that mathematics appears anywhere (Peralta, 2020). A multicultural approach to teaching 

mathematics can also guide students to comprehend the subject in an academic setting (in the 

classroom) and in an informal way outside traditional classrooms. According to Uy (2013), humanizing 

mathematics lessons helps to include all students and boost their confidence levels, promoting holistic 

learning of mathematics, and acknowledging the existence of “other” within mathematics. The practices 

of ethnomathematics have the ability to provide math educators with crucial resources that connect 

dominant and non-dominant forms of knowledge in ethnomathematics. The recognition of mathematics 

within cultural practices in conjunction with the discovery of different ways of thinking can be brought 

together as two perspectives of ethnomathematics (Peralta, 2020).  

Ethnomathematics can serve as a bridge that connects the theoretical aspect of mathematics with lived 

experiences. Consider, for example, the increasing diversity of the population in Canada/North 

America, which has led to emphases on including learners’ familial and cultural curricular assets in 

the formal curriculum. Ethnomathematics helps to overcome learning difficulties (Orey & Rosa, 

2007). The authors elaborated on their assumption on the origin of modern mathematics as follows: 

Much of what we call modern mathematics came about as diverse cultural groups sought to 

resolve unique problems such as exploration, colonization, communications, and construction 

of railroads, census data, space travel, and other problem-solving techniques that arose from 

specific communities. (Orey & Rosa, 2007, p. 11)  

Cultural variables have influenced students in their consideration of how they understand the world 

and interpret their experiences as well as that of others. In other words, culture influences the ways 

we gather and utilize our own mathematical knowledge (National Academy of Sciences,1994). 

Ethnomathematics helps students appreciate the contributions of their culture as well as that of others 

(D’Ambrosio, 1990; Joseph, 1991). As Freire (1986; 1998) mentioned, students are not containers to 

be filled with information, rather, teaching must involve the creation of knowledge and transference 

of information. Ethnomathematics is communal in the sense that all students in the class are 

significant and stay connected to their roots so that they develop resistance to harassment or 

domination and are equipped with the ability to engage in important concepts within mathematics, 

thus linking mathematics with its contexts.  

However, incorporating ethnomathematics approaches has its limitations. One limitation is that 

ethnomathematics can privilege socio-cultural aspects over cognitive aspects of mathematics 

teaching and learning. Through the process of introducing the connection between mathematics 
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learning and culture, often the progressive nature of learning itself is not regarded. In addition, the 

common method of practice and conceptualization for ethnomathematics is accomplished through 

only retaining the cultural aspects that are deemed relevant to the mathematical topics of interest. In 

this way, the mathematics portions are ‘extracted’ from those cultural practices, often losing the 

meaning behind the tradition shortly after it is introduced. Therefore, the appropriate realistic 

applications of ethnomathematics practices should continuously incorporate various significances 

(traditional, ecological, familial, historical, theological, holistic) throughout lessons. Hence again, our 

semiotic signal in choice of the signifier partner rather than resource. A more comprehensive analysis 

of EM and some of the arguments within the field can be found in Khan (2008).  

A brief introduction to variation theory 

Variation theory (VT) is a theoretical framework of learning and experience described by Ference 

Marton and several others (Marton et al., 2004). The variation theory of learning (Marton, 2014) 

focuses on the need for learners to notice/discern critical aspects of the object of learning. There is a 

core concept of the object of learning, which is situated in a context concentrating on “what” is 

learned and what students are expected to learn. In the framework of VT, the learners are drawn to 

contrasting by observing how something changes or is different, allowing them to mar Marton and 

Booth (1997) defined learning as the advancement of experiencing something in a new/different way, 

particularly at a moment(s) where there are differences in the structure of awareness. For Runesson 

(2005), “learning is defined as a change in the way something is seen, experienced or understood” (p. 

70). In order to draw awareness to changes, sequences of patterns of variation and invariance are 

required and are called critical discernments. While developing these critical discernments, there are 

four necessary conditions of learning in VT to consider: contrast, separation, fusion, and 

generalization. We have summarised our understanding of the elements of Variation Theory in a 

series of concept maps presented below, which are also available online. Note there are also linked 

concept maps that extend and deepen the understanding of the Object of Learning (OOL.), the internal 

and external horizons of the OOL, and the core concept of critical features (or discernments in the 

Math Minds rendering). In the interest of space, these have not been included.  

 

Figure 2: Concept map on theories of learning and experience to attain the object of learning (Khan, 

n.d.) 

https://cmapscloud.ihmc.us/viewer/cmap/1Q2TCGFCL-BHCW6F-4CJ
https://cmapscloud.ihmc.us/viewer/cmap/1Q2TCGFCL-BHCW6F-4CJ
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Figure 3: The three types of variation within variation theory (Khan, n.d.) 

In mathematics education, elements of the VT framework can provide practical guidance for teachers 

in designing mathematical lessons/tasks and can enhance the mathematical understanding of the 

learners (Handy, 2021; Watson & Mason, 2006). Jing et al. (2017) suggested that only a handful of 

studies are available on the effects of variation theory when used to inform teaching on students’ 

outcomes. Donovan et al. (1999) pointed out that in order to develop competence in a specific area of 

inquiry, students must understand facts and ideas in the context of a theoretical basis, and the knowledge 

must be organized in ways that facilitate recovery and application. Our attempt is to provide 

mathematics teaching and learning opportunities that can help learners experience mathematics.  

In the traditional mathematics classroom, students memorise a formula or algorithm, work through 

problems individually or in groups, or they take a test to demonstrate their understanding, thus helping 

teachers to evaluate them. The question here is, how can we empower learners with meaningful 

experiences in mathematics? In the educational context, the learning experience is the interactions 

that connect a learner with the matter being learned (Leung, 2010). Leung further identified three 

categories of understanding (of mathematical concepts by students) based on research conducted in 

a primary mathematics classroom in Hong Kong: create/discover mathematical knowledge beyond 

the present level; shape new mathematical knowledge; and re-shape prior mathematical knowledge. 

Ethnomathematics is present in the cultural practices of various groups of indigenous people and such 

practices have helped in preserving their cultural identity (Pradhan et al., 2021). It is important that 

teachers understand how mathematical knowledge is related to various cultures in classrooms with 

https://cmapscloud.ihmc.us/viewer/cmap/1Q2TCGFCL-1TDZZ2J-4CG
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cultural diversity and how socio-cultural factors influence the academic achievement of students 

(Haghi et al., 2013). The mathematics practices of the classroom should bring meaning to reignite 

mathematics knowledge, which can be explored through a multitude of activities and concepts, 

including fascinating designs/techniques/patterns such as kolams. 

A background on kolams 

Kolams are drawn using loose powder-like material (i.e., rice flour, chalk powder, rock powder, 

ground rice, sand, etc.) that connects and surrounds predesigned dots with lines. The practice of 

drawing kolams is generally performed on a wet surface so that the design stays for a long time. 

Usually, the dots are connected by lines to make a pattern, or loops are drawn around dots to create a 

design. The drawings of kolams originated from the practices of women from Tamilnadu, a ritual 

performed in the early mornings before sunrise. Typically, rice flour used in making kolams can feed 

many types of animals like ants, birds, and squirrels, and hence this land art is a symbol of harmonious 

living with nature. Kolam designs are recursive in nature. They start off as simple motifs and form a 

complex structure by repeating the subunits. There is a synchronization of yoga in the practice of 

drawing kolams. The health benefits range from improved blood circulation, meditative effect on the 

mind, and the posture strengthening the body.  Kolams are drawn to channel positive energy to one’s 

homes/offices, and it has a calming effect on the mind and body to prepare and face the hardships in 

store for the day.  

The potential of kolams in mathematics classrooms 

The art of kolams can create opportunities for students to recognize and build the context of 

mathematics applications outside of mathematics (Chenulu, 2007). Kolams can be used in educational 

applications of key mathematics concepts that include (but are not limited to) counting, patterns, 

symmetry, fractions, probability, geometry, graph theory, algebraic thinking, and spatial 

analysis/awareness.  

Kolams provide and introduce a holistic environment that can make connections to students’ lived 

experiences along with focusing on the whole child/person approach. It has the potential to not only 

incorporate an invitational approach into the mathematics classroom; the lessons learned can expand 

beyond the classroom as lifelong learning, respecting environment/resources, the cycle of life, and 

spiritual connections with body, mind, soul, and nature.  

How kolams exemplify VT and EM 

We see potential in providing an example of approaching the use of both variation theory and 

ethnomathematics in mathematics education through the practices of kolam drawing as a learning 

sequence for teachers. Through an ethnomathematics lens approaching the study of kolams, the 

mathematical aspects overshadow the cultural aspects. The ethnomathematics perspective observes 

kolams as a resource, as we can extract and recognize the mathematics portions from the cultural 

practice to make connections within the classroom (Perlata, 2020). Additionally, we notice the 

capacity to use kolams in the mathematics classrooms, as a compelling example of partnering 

variation theory with ethnomathematics.  

Kolams are exemplary in joining the perspectives of ethnomathematics and variation theory, and the 

practice brings forth several mathematical concepts in a constructive interconnected fashion. The 
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mathematical concepts expressed through kolam practices can provide opportunities for variation theory 

in student learning in making connections with critical discernments and allow for focus on the internal 

and external horizons of the object of learning. The object of learning acquires meaning through its 

external horizon in variation theory approaches (Lo, 2012), and generally relates to the cultural aspects, 

but this link is not made within teacher education since there is limited time and experience for most 

teachers in the exploration of external horizons that are truly external/different to their own. 

[Images from Figure 4 through 11 produced by O. Lu and S. Rajasekharan].  

 

Figure 4: Variation and developmental sequence in holding and dropping the rice flour 

 

Figure 5: Variation (rounded and slanted dots) from different methods of holding flour 

 

Figure 6: Sequencing of different dots, simple lines, and curves used in complex Kolam designs 

Note. Tracing the design can be used to initiate an interest of students in feeling the resources and 

partnering with them. 
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Figure 7: Dots, circles, and classic shapes/tiles part of traditional Kolam designs 

Note. Tracing the designs on the rice flour does not form part of kolam designs. But the authors 

consider it as a strategy that can be adopted in elementary mathematics classrooms to help create an 

interest in the subject. 

 

Figure 8: Variation in the skill level of the 1:3:1 dots Kolam designs 

 

Figure 9: Variation of beginner patterns created using 2:3:2 Kolam designs 
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Figure 10: Variation in skill levels shown in 1:3:3:1, traditional Kolam lamp (wick) design 

 

Discernments and drawing explanation VT and EM 

Using the framework of variation theory, we would like to probe the pre-lived and post-lived teaching 

as well as the learning experiences of mathematics educators with their students on particular objects 

of learning when partnering with culturally responsive instructional designs such as kolam drawings. 

Specifically, these lived experiences can be brought to the surface with the internal and external 

horizons as variation theory components, which can directly be indicated with the learning.  

From the variation theory framework, the key elements of critical discernments can draw attention to 

and emphasize the multiple characteristics, movements, techniques, and types of kolam drawings. 

The critical discernments formed from the kolam drawing practice can be creatively curated with 

opportunities to relate to mathematical understandings and/or holistic learning concepts, integrated 

into the classroom. These types of discernments may include choosing the material or style when 

creating a design. By selecting from various types of flour and sand, the techniques and methods may 

vary. The process of drawing kolams includes discernments of actions, such as performing body and 

hand movements to hold or pour the material (i.e., tracing, dropping) (Figure 4). Prior to drawing the 

selection and method of drawing, the pattern type must be considered with several points of critical 

discernment. This may include, the number of dots, types of dots (slanted or round), organization of 

dots (from centre to the outer formation), and types of lines (straight, looped, curved, parallel). Also, 

critical discernments must be taken into account for the overall design pattern (odd number sequence 

pattern, connecting dot pattern, etc.), finding a route from starting point to completion, and 

maintaining the connection with consistent lines to account for each dot with overall sequencing.  

In producing the final kolam drawing, critical aesthetic discernments are made in reflection, 

contemplation, and admiration of the artwork done. Comparison with past drawings and/or the 

drawings of others provides other opportunities for discernment. These individual and peer 

comparisons can involve critical discernment regarding learning from different or similar techniques 

and patterns, reflecting on the pre-planned process in design, and observing the differences in actions 

that could have been made for improvement.  

The critical discernments at play have been displayed throughout this paper. The practices shown in 

the images of introducing and addressing the critical discernments in the stages of kolam drawings 

do not have to be followed using the same procedure/organization of step-by-step instruction. In our 
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trials, we only offer an example of some possible critical discernments at work to produce kolam 

designs. Figure 4 illustrates the methods of holding the rice flour, which can be done in three ways, 

1) flour between the index finger and thumb, 2) flour pinched by all fingers and dropped with the 

middle finger, and 3) flour in a fist dropped from the pinky opening of the hand. Figure 5 shows the 

types of dots and placements of dots are shown in the variation of circular/rounded dots and slanted 

dots, resulting from the third and first methods of holding (respectively). Figure 6 presents multiple 

variations and sequencing of different circles, simple lines, and curves. Incorporated together, these 

produce a kolam design. There are designs of the tracing method (start with material on the surface 

and then finger draw designs) with classic dot and line circles. Additionally, there are basic types of 

lines (horizontal, vertical, diagonal) and complex lines (rounded, spiral, zigzag, parallel). Figure 7 

demonstrates a variety of shapes created from the tracing method and the line drawing method as well 

as common kolam shapes, which can also take the form of polypad tiles (“Polypad - Virtual 

Manipulatives,” n.d.). Figures 8–10 showcase the range of complexity in kolam dot line drawings. 

This first starts with one of the simplest designs with a 1:3:1 design, then with 2:3:2 designs in star 

and flower patterns, and finally with a more complex design of the traditional lamp kolam pattern. In 

slowly progressing the aspects that make up a kolam design, critical discernments can draw attention 

to the areas of improvement and importance for students to learn to make a complex kolam design. 

Throughout the paper and practice, the experience level of kolam designs is represented in side-by-

side images, valuing the beginner and advanced learners and demonstrating the variation in direction 

and precision based on skill level. The final product of the project is displayed in Figure 11 below. 

These designs were taken to the natural land surface, honouring the traditional ways of practicing 

kolam drawing outside in the natural environment. The designs below are the final works of the 

practice done in previous figures and compiled into one image to demonstrate variation in skill level, 

symmetry, and the social aspect of drawing kolams.  

 

Figure 11: Holistic realistic practice in demonstrating the final Kolam drawings (variation in 

comparing skill levels and symmetry) 
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Mathematics for multispecies flourishing (M4MSF) 

 

Figure 12: M4MSF framework (Khan, 2020) 

Mathematics for Multispecies’ Flourishing is an ethical framework for the teaching and learning of 

mathematics that recognizes the right of all species to flourish and encourages respectful partnership 

between humans and other species. It is framed as extending the frameworks that are attuned to human 

flourishing (Seligman, 2012; Su, 2020) to the multispecies’ world. The latter is understood expansively 

and in ways consistent with a decolonized and ethical ecology. Mathematical activity or learning 

experiences are intentionally and explicitly connected with needs for survival, transcendence, 

belonging, dignity, and challenge through a consideration of land, language, lore (story), living, logic 

and learning. It entails a period of passionate immersion (see Khan, 2020; Tran et al., 2020). 

Table 1: Rethinking kolams through M4MSF 

Element Exemplification from the practice 

Survival The rice flour in kolams helps in the survival of many species (e.g., ants, birds) 

including the survival of the art. Here, we connect learning of mathematics with 

ecological kinship. 

Transcendence Born of a dot, kolams represent energy or creative power. The women who draw 

kolams act as creators of positivity and they rise above materialistic thinking and 

oppression to create auspiciousness in daily lives. 

Dignity Dignity of kolam as an art form connected to science and mathematics, a combination 

of tradition and modernity. Teaching mathematics through kolams as a way of telling 

boys/men that girls/women have been learning mathematics. 

Belonging Kolams belong to specific cultures in practice, and to the entire universe in 

philosophy or intention, and in materials used to draw kolams. 

Challenge In drawing/creating the design, usually without lifting the finger. Getting up early in 

the morning before sunrise to draw kolams is a challenge. It is a challenge to explore 

the mathematical aspects of geometric forms, symmetry, number theory, algebra, and 

other mathematical concepts through kolams (Chenulu, 2007). 
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Element Exemplification from the practice 

Land Kolam is a land art or an environmental art that was transferred from remote areas of its 

origin to modern locations where this art could interact with more audiences and thus 

widening the scope of this land art (Rahbarnia & Chadha, 2015). 

Language Kolam is a language of care, sharing (of food), compassion, and universality. 

Lore Many folk tales exist in Tamil culture to make the kolam drawings mandatory for Tamil 

households. This can contribute to creativity and imagination in classrooms. 

Living The rice flour of kolams support many species, and people living in apartments employ 

kolam artists to draw kolams in front of their buildings and this provides livelihood for 

the hired hands. 

Logic Kolam is drawn as an act of charity, to welcome prosperity, and to drive away the evil 

spirit. Kolams are aesthetic and serve as sources of positive energy. Kolams symbolize 

the merge of home with the universe, a notion similar to the Hindu concept of 

‘Vasudhaiva kutumbakam,’ which means that the whole world is one family (Tran et al., 

2020, Nagarajan, 2018). 

Learning Measurement is involved in putting the dots and lines. Specific amounts of rice flour to 

be used for dots, lines. Kolams reflect curiosity, creativity, perseverance, emotional and 

physical regulation, and confidence and these are vital to learning. Problem solving and 

innovation are involved in kolam drawings. 

 

Conclusion 

Partnering ideas from variation theory and ethnomathematics, we believe, has value for teachers of 

mathematics, education researchers, and curriculum designers. The chief value is a reliable approach 

to developing critical awarenesses while not succumbing to the tendency to reduce the cultural 

practice only to its mathematically interesting aspects but to continue to situate both the practice and 

mathematics as living, evolving aspects of human cultures consistent with mythopoetic (Khan, 2011) 

and multispecies flourishing (Khan, 2020) framework. Another value is in keeping the cognitive and 

cultural aspects of practices together in a respectful and appropriate way that is not ‘resource’ 

extractive. Kolam drawing provides an accessible, yet sufficiently challenging and mathematically 

rich, starting point for exemplification and extension of these ideas for teachers and can provide 

several points of entry for making critical mathematical and cultural discernments while honouring 

multicultural traditions in mathematics classrooms.  

We consider our study important in terms of creating a cultural meaning for students based on the 

why, what, and how of learning mathematics. Kolam drawing contributes to/supports the skill of 

discerning teaching strategies/approaches by which a better understanding of mathematics can be 

created in a cultural setting. Teacher educators need to share a congenial partnership with students in 

building knowledge, and so together they can develop previous knowledge, perceptions, and 

creativity for both students and teacher educators. It has been proven by empirical research that higher 

achievements are the learning outcomes of positive emotions like enjoyment in learning, and lower 

achievements are connected with boredom and anxiety (Putwain et al., 2020). Shockey (2016) added 
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that certain concepts that may seem unrelated to mathematics, can be used in its mathematics 

pedagogy under the influence of ethnomathematics. Kolams can be used to explore mathematics that 

exists beyond the limits/boundaries of academic circles. Mathematics is part of every culture 

(Ethnomathematics) and how it is practiced by different cultures (for example, the kolam drawings) 

can be incorporated into the school mathematics curricula. Studies have been conducted to understand 

the perceptions of mathematics by pre-service teachers and how they struggle to apply their subject 

knowledge in elementary mathematics classrooms (Burton, 2012). Straats (2006) believed that “If we 

are serious about understanding mathematics in local contexts of use, we must be willing to ask 

questions that do not seem mathematical in our own intellectual tradition” (p. 44). 
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Bodymarking: Interpreting embodied experiences of spatial reasoning 

Josh Markle1 and Jo Towers2 

 

Drawing on an enactive hermeneutic theoretical framework, we describe and interpret students’ 

embodied experiences of spatial reasoning in a grade 12 mathematics classroom. In doing so, we 

employ a novel methodology and tool that we call Bodymarking to create graphic profiles of everyday 

classroom actions, such as gaze and gesture. Using these profiles, we point to the important role of 

sensory experience in knowing and doing mathematics. 

Keywords: Embodiment, gesture, gaze.  

 

Introduction 

This work sits at the intersection of two critical areas of research in mathematics education: spatial 

reasoning and embodiment. Spatial reasoning has been identified as integral to both general 

mathematical capability and the potential for individuals to flourish in life beyond formal 

mathematics education (PISA, 2021 Mathematics Framework). Research on the body in mathematics 

education varies widely and includes the constitutive role the body plays in the development of 

mathematical understanding (Davis et al., 2015), how students experience the body in the 

mathematics classroom (Roth & Thom, 2009), and how our senses, such as sight and touch, influence 

how we know and do mathematics (De Freitas & Sinclair, 2014). In this study, we employ a novel 

process we call Bodymarking (Towers et al., 2023), which we use to observe and describe everyday 

classroom actions, such as gesture and gaze, to offer an interpretation of how students use the body 

to both sense and make sense in a spatial reasoning activity. 

Theoretical framework 

We adopt an enactive hermeneutic theoretical framework (Markle, 2021) to interpret students’ 

embodied experiences of spatial reasoning in the mathematics classroom. This framework is 

grounded in, on the one hand, the principles of enactivism, which view cognition as a complex 

phenomenon emerging from interactions between organisms and the environment (Varela et al., 

1991), and on the other hand, carnal hermeneutics (Kearney & Treanor, 2015). Because our focus is 

on sensation in the mathematics classroom, we draw extensively on this interpretive philosophical 

approach, which views the body as both interpretable and interpretive. Enactivism and carnal 

hermeneutics share a foundation in phenomenology, in particular Merleau-Ponty’s (1945/2012) 

phenomenology of the lived body. Consequently, we too, are directly informed by Merleau-Ponty in 

this work. 
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Methodology 

Towers et al. (2023) developed a fine-grained tool for mapping classroom action, and use the tool to 

record and visualize some common ways students and teachers engage each other through intentional 

movements of the body (e.g., gesture), gazing, and tool use (e.g., writing). Applying the tool yields a 

color-coded map of the ways students are oriented towards and by each other and their environments 

in a given lesson. In this study, we apply the process to two 74-minute video recordings, each focused 

on one of two small groups of students. 

Data 

Data generation occurred as part of larger study in two grade 12 classes with a total of 36 participants 

at a large, western Canadian high school. One of the courses was a calculus class in which 16 

participants took part in two sessions. Subsequently, 5 of those participants were invited and agreed 

to participate in a third and final session. All of the sessions with this first group took place virtually 

due to COVID-19 restrictions. The second class was a pre-calculus class in which 20 participants 

took part in three in-person sessions. Both classes were part of the school’s International 

Baccalaureate (IB) program. The focus of this study was on students’ embodied experiences of spatial 

capability in the mathematics classroom. In particular, the aim was to work in spatial ways (e.g., 

through visualization) on common topics in the secondary classroom (e.g., working with quadratic 

functions). In this paper, we focus specifically on one lesson in which students worked with parabolas 

and quadratic equations through spatial activities, including visualization and origami. 

Describing sensation and orientation through Bodymarking 

Bodymarking (Towers et al., 2023) is a methodology and fine-grained tool for mapping classroom 

action. It was originally intended as one of a suite of diagnostic tools developed by a team of 

researchers (see e.g., McGarvey et al., 2018, 2022), which are designed to indicate and characterize 

collective action in the mathematics classroom. In the present study, we used the tool to record and 

visualize some common ways students and teachers engage each other in the classroom, such as 

intentional movements of the body (e.g., gesture), gazing, and tool use (e.g., writing). Applying the 

tool yields a color-coded map of the ways students are oriented towards and by each other and their 

environments in a particular lesson. In addition to identifying collective action in the classroom, we 

have found it fit for other analyses involving the observation and description of classroom action, 

such as investigating how metaphors for teaching and learning manifest in the mathematics classroom 

(Davis et al., 2023). 

Preliminary analyses have been conducted on video of mathematics lessons from the Trends in 

International Mathematics and Science Study (TIMSS), and an example is shown below (Figure 1). 

 

Figure 1: An example of Bodymarking 
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Observations—or, markings, which are indicated by cells of colour—are recorded in a spreadsheet 

for each of 8 categories at 15-second intervals for the duration of the lesson. The categories, from top 

to bottom in Figure 1, include Pointing, Gesture, Gazing (Public), Gazing (Private), Boardwork 

(teacher), Boardwork (student), Writing, and Manipulating Tools. Although these constructs might 

seem conspicuous for their everydayness, each has been consistently refined and reinterpreted over 

the course of developing the tool. Moreover, the everyday nature of these criteria speak to the 

everydayness of our embodied experiences—we spend everyday of our lives in our bodies. For ease 

of reference, Table 1 provides working definitions for each of the Bodymarking criteria. 

Table 1: Bodymarking criteria 

Bodymarking 

Strands 

15 Sec. 

Intervals Description of Strands 

Pointing  
Using fingers or objects, such as a pencil, to focus attention on 

aspects of written work, identify key ideas or missing steps, etc. 

Gesture  
Gestures involving the hand while not engaged in pointing; bodily 

movement, such as modeling distance with outstretched arms 

Shared Gaze 

(Public) 
 

Sustained watching of an object of interest in public view, such as 

when a student stares at a problem written on a chalkboard 

Shared Gaze 

(Private) 
 

Sustained watching of an object of interest in private view, such as 

when a student stares at privately written work 

Boardwork 

(Teacher) 
 

Involves addition and/or removal of work by teacher in public view, 

such as on a chalkboard, whiteboard, or overhead projector, etc. 

Boardwork 

(Student) 
 

Involves addition and/or removal of work by student in public view, 

such as on a chalkboard, whiteboard, or overhead projector, etc. 

Writing  
Addition and/or removal of work in private view, such as on a 

student’s worksheet or notebook 

Manipulating 

Tools 
 

Using any sort of tool, including a calculator, working with 

manipulatives, etc. 

 

As a tool and process, Bodymarking was not intended to be predictive or even descriptive of any 

particular pedagogy or mathematical activity. To draw a metaphor from painting, one might argue it 

is in the tradition of Impressionism, not Realism: its 15-second slivers, like Monet’s brushstrokes, 

convey a sense of movement of things, rather than naturalistic depictions of the things themselves. 

More concretely, each node of colour signals the “combined intentions of identifying and interpreting 

– that is ‘marking’ and ‘remarking on’ – bodily (inter)action” (Davis et al., 2023, p. 478). 

Though the original aim of the Bodymarking tool is thus to give a sense, in tandem with several other 

diagnostics, of collective action on a classroom scale, we found it furnished us with a lens and 

grammar for describing and interpreting how the participants in the present study might sense and 
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orient in the mathematics classroom. We opted to scale down the unit of analysis from a classroom-

level and focused on two groups of three and four students, respectively, over the course of a 74-

minute lesson. We chose this lesson because it was one in which a camera remained focused on each 

of the groups for the entire period, and because the lesson contained a wide breadth of spatial 

investigations of topics typically treated as non-spatial (e.g., using the quadratic formula to find 

tangencies between a line and a parabola). 

Applying the tool 

We applied the tool to two 74-minute video recordings of a single lesson, each focused on one of two 

small groups of students. The video recordings were an important source of data from the larger study 

on students’ embodied experiences of spatial reasoning, so they had already been viewed several 

times. However, although the video was somewhat familiar, the Bodymarking process created a 

certain distance between the interpreter and the data. We coded the video without sound, which is an 

effort to bracket out context. In coding for Gesture, for example, the intention is to capture all 

instances of gesture, regardless of whether or not a particular instance is mathematical or even 

pedagogical in nature. 

 

Figure 2: Mappings from two groups 

Figure 2 shows Bodymarking profiles for the two groups of students. In part because we scaled the 

unit of analysis from classroom to small group, we removed two of the coding criteria, Boardwork 

(student) and Boardwork (teacher). This is not to say these may not be important phenomena at this 

scale, only that neither happened to be present in the resultant mappings for this lesson. Another 

feature of the Bodymarking process is to code only what is visible in the video recording, so while 

there were some instances in which the teacher (Markle) was working at the board at the front of the 

room during the lesson, it was off-screen and thus not accounted for. Moreover, from an enactive 

hermeneutic perspective, we are most interested in how students touch and are touched by the world 

around them. We argue this is best captured in the categories that are explicitly about sensation and 

orientation, namely Pointing, Gesture, Gazing, and Manipulating Tools. 

Though these two groups were close in proximity, no more than three or four feet apart, their 

respective mappings bear a stark contrast. Group 1 appears to point (green) and gesture (blue) more 

frequently, for example. It is intuitive to begin comparing the two groups and searching for 

correlatives, say in the quality of their written work, but that is not how we employ the Bodymarking 
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tool in this study. Rather, we view the tool as indicative of sense-making in the broadest sense, of 

how students bring forth a world through sensation and orientation in the mathematics classroom. We 

allowed the tool to direct our attention to intervals of the lesson that provoked us in some way. We 

then returned to those intervals in the video recordings and sought to describe and interpret them from 

an enactive hermeneutic perspective. Figure 3 depicts three such intervals on the Bodymarking maps 

of the two groups. 

Figure 3: Intervals of classroom action 

These intervals (shaded regions) stood out for how they reflected distinct cadences of classroom 

action, in particular through gesture (light blue) and gazing (light and dark brown). Blocks (a) and 

(b) seem to depict frenetic activity: in both groups, particularly group 1, pointing and other gestures 

are used frequently, and gaze is in constant flux, private in one moment and public the next. Block 

(c) captures a different sort of rhythm. In both groups, movement is oriented around tool use, but 

there is a divergence as well: gaze in the first group continues to oscillate between public and private, 

while in the second group the gazes seem more fixed and stable. With these insights in mind, we 

returned to these intervals in the video to see if the Bodymarking process aided us in describing how 

students experienced spatial reasoning in the classroom. 

Movement: Pointing and gesture 

The Bodymarking process focuses the interpreter on specific movements of the body in the 

classroom. In the tool, pointing is parsed out from the broader category of gesture. Madison (1988) 

refers to hermeneutic inquiry as a “method for choosing appropriately” (p. 176), and the choice to 

focus on pointing in particular is deliberate. One reason is connected to the nature of pointing: when 

we point, we mean to orient ourselves or others (e.g., pointing to a desired location on a map or when 

one “points the way” to another). Contrary to other gestures, which may or may not be intentional or 

directed toward another, pointing is a solicitation, a movement that “sketches out the first sign of an 

intentional object” and “indicates…specific sensible points in the world and invites me to join” 

(Merleau-Ponty, 1945/2012, p. 191). Pointing is a way we can reach out and touch the world, and 

solicit others to join us there, but it is also a response to a call, a means by which we ourselves are 

oriented. As Kearney (2015) noted, we are always “solicited by the flesh of the world before we read 

ourselves back into it” (p. 45). 

But pointing is not the only means by which we bring forth a world. The broader category of Gesture 

captures the myriad ways we move with intention in the classroom. This can include, for example, 
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raising one’s hand to ask a question or using one’s arms to measure a distance. Figure 4 highlights 

two intervals from the lesson in which some form of bodily movement was prominent, whether it be 

through pointing, gesture, or manipulating tools, such as origami paper. 

Figure 4: Pointing, gesture, and manipulating tools 

We have highlighted manipulating tools in this mapping because of something that stood out to us on 

reviewing the video segment after completing the Bodymarking process. We noticed several 

instances in which the members of group 1 used touch to explore each other’s work. The task involved 

a simple origami construction, in which an edge is folded onto a point. Doing so repeatedly yields a 

parabola formed by all of the crease lines. In fact, the provocation in Hull (2013) is: “Doing this 

origami fold is equivalent to solving a quadratic equation” (p. 49). Figure 5 shows one of these 

instances. 

Figure 5: Paper folding and movement 

After carefully making some folds (panel a), one student calls attention to their origami paper, framing 

a crease line between their thumbs as their peers look on (panel b). Three of the students then return 
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their gazes to their own origami paper, but only two of them begin to fold again. The third student 

instead reaches out across the table and pinches the first student’s folded paper between their thumb 

and index finger (panel c). With their other hand, they tentatively bend their own piece of paper, their 

gaze fixed on it. After this confluence of gaze and touch, the four students then turn with renewed 

purpose to their individual folding (panel d). 

Two phenomena of interest emerged from reviewing this segment in light of Bodymarking. One is 

the critical role of touch in spatial reasoning. Although the instructions for folding were diagrammed 

and presented on the whiteboard at the front of the classroom, and I (Markle) demonstrated the fold 

in real-time with my own paper, this group of students demonstrates the importance of tactile 

experience in visualizing and executing a spatial task. In their case study of blind students in 

mathematics, Figueiras and Arcavi (2014) noted that touch has the potential to be “very fruitful for 

connections between global and local properties of mathematical objects, as well as for emphasizing 

properties and processes of reasoning” (p. 131). Though provocative, their analysis often treats touch 

as a discrete source of sense data rather than a diacritical phenomenon of the entire body. This leads 

us to a second, more surprising insight that emerged from the confluence of touch and gaze depicted 

in panel c. In this frame, a student is touching their own, partially folded paper with their left hand, 

and joining their peer at a sensible point, to paraphrase Merleau-Ponty, with the touch of their right 

hand. But the way this student’s gaze shifted back to their own paper during this exchange struck us, 

and it is something we did not notice until we applied the Bodymarking process to the data. We take 

up the enigma of gaze in the next section. 

Movement: Gazing 

In this work we delineate between what we call public gaze and private gaze. A public gaze is 

sustained watching of a publicly accessible object. For example, during whole-class instruction, 

students may gaze at the teacher or whiteboard at the front of the classroom. A private gaze is 

sustained watching of an object intended for private viewing, such as when a student gazes at their 

notebook. Coding for gaze in in this way involves determining which type of gaze is most prominent: 

are most individuals looking to an object intended to be publicly accessible over the 15-second 

interval or are most looking to their own private works? Intervals that contain significant amounts of 

both public and private gazing are dual-coded. Figure 6 highlights intervals of interest from the lesson 

with respect to gaze. 

Figure 6: Intervals of gaze 
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From a practical perspective, Bodymarking’s delineation between public and private gazing yields a 

proxy for the nature of classroom action in a given interval. It approximates an answer to the 

following question: Are individuals mostly oriented by and toward each other or themselves? Coding 

in this way allows the tool to point the interpreter toward different cadences of everyday action in the 

classroom. On one level, we argue the distinct cadences of gaze depicted in the highlighted blocks in 

Figure 6 reflect distinguishable cadences of classroom interaction. Group 1’s (top) pattern seems 

frenetic, while Group 2’s (bottom) appears more stable, with long periods of uninterrupted public 

gazing. This is not to say one pattern of gaze is preferable to another, only that these groups had 

established their own interactional style over the course of working together in this class. In this sense, 

following Nemirovsky and Ferrara (2009), gaze can be seen as a form of bodily activity that plays “a 

part in a given conversational turn or transaction” (p. 162). Indeed, the video segments associated 

with the highlighted intervals reveal two very different but similarly effective—at least in terms of 

solving the problem at hand—patterns of interaction. For example, the members of Group 1 

frequently check in on each other’s work with a glance before returning to their own work, while the 

members of Group 2 sustain their collective focus on a single group member’s work for longer 

intervals. In this sense, the distinction between private and public gaze is well-defined. 

Another moment of interest emerged toward the end of the lesson, and again, questions emerged from 

the Bodymarking process that did not occur to us to pose during previous viewings. This moment 

occurred just after the last highlighted blocks of gazing in Figure 6 during a final visualization 

exercise. Having solved for the tangency between the line and parabola in the first segment of the 

lesson, then explored the spatial properties of parabolas through paper folding in the next, I (Markle) 

asked students to visualize the parabola formed between a point (focus) and a line (directrix). Next, I 

asked them to slowly move the focus up and down, and to visualize what they saw happening to the 

resultant parabola. Figure 7 depicts group 1 working through the visualization exercise. 

Figure 7: Using origami to visualize a parabola 
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Two provocations emerged from this moment, neither of which we had fully acknowledged in our 

initial viewings of the video. The first had to do with one student’s gestures, highlighted in the boxes 

in Figure 7. As Markle described moving the focus away from the directrix, this student’s hands 

appeared to reflexively open, describing the movement of the parabola as it became increasingly 

shallow as the focus moved away from the directrix. Though we had noticed this gesture in previous 

viewings, the Bodymarking process focused our attention to the way this particular student’s gaze 

coupled with the gesture. In this case, we argue, the student’s gaze is neither wholly public nor 

private: the student seems to be looking off into the room, possibly at Markle as he leads the lesson, 

but is also taking part in a group visualization, which clearly has private aspects (including not only 

what the student ostensibly sees in their visualization, but their gesture as well). This called our 

attention to the gazes of the other members of the group, all of whom have their eyes closed. Coding 

this through the Bodymarking process was difficult. From a practical perspective, these students were 

not gazing at all—their eyes were closed. But they were engaging in a visualization task in which we 

all intended to see the same thing. We argue that this is indeed a gaze of a kind, one in which the 

“seer does not disappear in the visible or vice versa but…forms part of the visible and is in 

communication with it” (Moran, 2015, p. 230). 

Concluding remarks 

Kearney (2015) wrote that the task of carnal hermeneutics is to “revisit the deep and inextricable link 

between sensation and interpretation” (p. 17). The Bodymarking process provided one means of 

opening that link to question. It also helped to underscore the potential of reimagining of how we 

view the body in the mathematics classroom. The importance of gesture in learning has been 

established (Novack & Goldin-Meadow, 2015), and we see students in the lessons described above 

using gesture in a variety of practical ways. However, we take a wider view of physical movement in 

the classroom to foreground the ways in which our senses, through the movements of our bodies, 

enlist each other in bringing forth worlds of meaning. Moreover, we see through our analysis not only 

the ways in which a body’s senses are entwined, but the ways bodies are entwined through the senses, 

as in the paper-folding episode described above. This leads us to suggest the importance of 

recognizing the role of sensation and orientation as ways of knowing and doing mathematics in the 

classroom, and Bodymarking as a potential means of doing so. 
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Some mathematical models in individual and team ball games 

Bienvenu Rajaonson1 

 

This paper sheds light on the transition from practice to theory regarding ball games. To do so, it 

reviews some patterns experienced in the practice of volleyball. Then, to move from practice to 

theory, the use of simple first-degree equations related to two parameters has been carried out. The 

first one is the number of players and the second one is the number of available balls. These equations 

demonstrate the potential of the algorithms created for their application in the learning and 

improvement of players’ skills. Moreover, these equations open opportunities for their application in 

other individual as well as collective sports with ball. It then discusses how this applies to the 

interdisciplinary field of mathematics and physical education. Finally, the modeling performed by 

this article is yet another way of raising awareness and advancing research on sports and their 

integration into society.  

Keywords: Ball game, equation, models, mathematics education, continuous and discontinuous 

circuits. 

 

Introduction 

According to the Visual Dictionary, “ball sports are individual, or team sports played by throwing or 

hitting a solid or air-filled sphere,” QA International (2009). Games with a ball are usually a 

competition between two individuals or collective opponents. They consist in scoring points. To do 

this, there is a repeated alternation of offensive and defensive actions until the scoring phase is 

reached or not. 

Such ball sports may include games such as basketball, volleyball, tennis, pickle ball, soccer, rugby, 

and hockey, to mention just a few. Each of these sports involves and requires basic technical 

movements, which normally conform to the principles and rules of the discipline (Teodorescu, 2013). 

As a result, the level of competition is and will be more and more complex and challenging. In this 

regard, apart from the physical and psychological qualities, it is essential to strengthen the players' 

technical and tactical skills towards less predictable actions. Indeed, it is a game of possession of the 

ball. On one hand, possessing the ball corresponds to an offensive action with the possibility of 

scoring a point. On the other hand, the defensive action seeks to dispossess the ball from the opponent 

(Teodorescu, 2013). 

The purpose of this article is to show that training schemes in volleyball have mathematical 

explanations. They are no exception to the rule. Then, once modelled, the latter can be extended to 

other individual and team ball games. On the one hand, they provide a better understanding of each 

of these games. On the other hand, their use facilitates the technical and tactical training and practice 

of both individual and collective team players. In this sense, they offer an opportunity to learn more 

about ball sports and mathematics at school as part of an interdisciplinary physical education and 

sports program. 

 
1Université de Moncton, New Brunswick, Canada 

Bienvenu Rajaonson: bienvenu.rajaonson@umoncton.ca 

mailto:bienvenu.rajaonson@umoncton.ca


 141 

As the level of competition continues to evolve, many technical, tactical, and strategic requirements 

pose a constant challenge, because they are increasingly complex. As a result, there is greater 

emphasis on "scientific expertise" to support a "race for performance" Delalandre (2010). In other 

words, ball games are confronted with a systemic problem to which it is important to provide both 

theoretical and practical answers. 

In this perspective, Teodorescu (2013) thinks that it is necessary to approach the problem in a comprehensive 

way. Because, according to him, “technique is the primary means by which tactical tasks are carried out” 

(p. 2). So, there is no separation between individual techniques and collective tactics. In other terms, the first 

could not exist without the other and vice versa. In this sense, Teodorescu adds that, as their main objective, 

the tactical schemes and technical exercises developed for learning and improvement must tend towards 

their modeling. Thus, Teodorescu thinks that “for the complete practice of the game, we consider that forms 

of organization of individual and collective actions are necessary, e.g., tactics for all phases of attack and 

defense, as well as exercises for learning and perfecting specific tactics not only for these phases, but also 

for the correlation between phases” (p. 57). Gréhaigne and Nadeau (2015) add another perspective claiming 

that the spatiotemporal parameters are the most important factors in team sports. They said, “distance 

measurement can be transformed into time measurement” (p. 80). As such, these parameters may be 

understood as an interval relationship between players, either with teammates or with opponents. In other 

words, Gréhaigne and Godbout (2014) interpret that as the translation of an unfolding of an offensive or 

defensive action according to the variation of direction and distance between the players at a given moment. 

For them, therefore, modeling is based on the “analysis of the dynamics of the game” (p. 97). Parlebas 

(2005) argues that “it is possible and important to model mathematically by stable configurations, invariants 

that summarize the operating systems of the game under consideration. We call these operating systems 

universals” (p. 15). In fact, once formalized, these “universals” are likely to find applications in other sports 

with balls. Among other things, Parlebas (1985) has highlighted in his research work the modeling of 

changes in the role of players based on interactions parameters (offensive and defensive) using the theory 

of graphs and that of the “scoring system e.g., in volleyball” (p. 37).  

The theoretical statements cited above are therefore the main references for understanding the interest 

and complexity of ball sports. Each of them showed the importance of the modeling process in the 

organization and practices of these sports. They also showed whether the work proposed was different 

and whether it could advance research in the field of ball sports. For these reasons, they helped 

considerably in validating and orienting our methodological approach.  

Methodology  

This work is based on several years' experience of playing, competing, and studying volleyball. The 

author was a national team player at university and at national level. He also coached the men's and 

women's teams at the University of Antananarivo in Madagascar. These teams both won national 

championships and gold medals at the 1978 African University Continental Championship. This 

enabled them to take part in the 1979 Universiade in Mexico City, representing the continent. The 

men’s team placed 12th out of 24 participants.  

The study was conducted in three distinct parts. Section A was devoted to the identification of systemic 

problems in the context of volleyball training. Then, section B focused on the repertoire of measures 

taken to both overcome the constraints encountered and seek the achievement of the learning and the 
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development of predetermined objectives. Finally, section C was a direct consequence of the second 

phase and was dedicated to the mathematical modeling of the measures taken. This last part would 

allow the generalization of the models for an application to other sports with ball.  

A. The context of the practice 

The conditions of practice of volleyball training, in which the team concerned was confronted, were 

considered systemic and were presented as follows:  

• The number of players present at the training varied in each session because it depended on 

the availability of the players. 

• The number of balls also varied, due to various causes such as punctured, badly inflated, worn 

out, or the cost of new equipment. 

• The use of the gymnasium was shared with other sports disciplines. Also, we often were 

obliged to play in the outside fields without fences, which caused considerable time spent on 

the recollection of the balls. The training duration was limited. 

In short, to remain competitive, the players’ training management had to adapt to these recurrent 

problems and look for appropriate solutions to each session. 

Thus, the first aspect for our approach was to solve the time lost to collect back the balls. In other words, 

we had to optimize the use of the available training time. To this end, it was necessary to integrate into 

the learning and improvement exercises a circuit for recovering and putting the balls back into play. 

The second aspect was to solve the variation in the number of balls available. This was done to ensure 

that during each session, a player can learn or improve the game through a high number of ball touches 

and experiences in terms of game situations.  

The third aspect was to resolve the variation in the number of players present. In fact, based on the 

technical and tactical deficiencies or strengths of each player and/or of the whole team, it was 

mandatory to proceed with various exercises including those personalized and others that tackled 

collective tactical approaches. 

B. The context from practice to theory 

The transition from this observation of practice constraints to a conceptual generalization of their 

solution was the cornerstone of the work. While solving the specific case in volleyball game, the idea 

was to develop simple mathematical formulations that could also be extended to other ball sports. 

Practice 

Considering the observation seen before, the few schemes given as examples below were developed 

to support the process. At the same time, they mainstreamed the reduction of the time spent for the 

recovery of the balls.  

• When there was a limited number of balls, the training could be done by dividing the number 

of players present into two or more groups. 

• When there was enough number of balls for the players present, there were possibilities to do 

individual, two and three-line groups. 

• The practices were planned to take place either by workshop rotation or by separate exercises. 
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The transition from practice to theory took into consideration the two key parameters mentioned 

above, namely, the number of players and the number of balls. 

Theory 

The two parameters that come with the process are therefore numbers. The idea was then to see the 

possibility of putting them into an equation. Depending on the case, the plan was to organize the 

session with practical exercises diversified according to the game strategy by making simulations 

either from the number of balls available or with the number of players present. 

Moreover, a discontinuous ball circuit associated with continuous ball circuit models had been 

introduced in the selected models used in a volleyball practice training system. They were supposed 

to diversify the form of exercises and increase practitioner’s skills efficiency in anticipating 

unexpected scenarios in attack as well as in defense positions.  

C. Modeling towards a generalization of the concept 

Mathematical modeling was the final phase of our approach. It served to optimize practices whatever 

the number of balls available and the number of players present at the session. This consisted in 

putting the key parameters - the number of balls and the number of players - into an equation form. 

So, x was named as the number of balls and y as the number of players. They should be put in the 

form of a first-degree equation and would take the shape of a mathematical model applied to the 

training of volleyball. As many of the volleyball training schemes are the same as those encountered 

in other sports with balls, their applicability should follow a case-by-case observation process. 

Results 

Hereafter are the modeling results obtained from the methodological approach. They are presented in 

two sections as follows. Section A is dedicated to presenting the three mathematical models which 

were developed. Then, section B is devoted to the introduction of the continuous and discontinuous 

concept circuits of the ball.  

Section A. The three equations developed. Here are few schemes used to train players in volleyball.  

 

Figure 1: Some selected models used in volleyball practice 

The examples shown in Figure 1 include both individual and collective practices. The correlation 

between the two key parameters - number of balls and number of players - is well highlighted. Thus, 
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for example, there is the case of one ball for one player. Then, there are cases of one ball for two 

players or three players. There is also the case of a ball for one or two groups of players. The 

arrangements also vary, as they are either in line or in the face-to-face players scheme or in the shape 

of a triangle. Finally, there is the case of one ball hit at a time, which needs to be picked up back to 

the practice session. In principle, these examples may or may not be used directly in the game space, 

depending on the specific content of the training session. 

The theoretical conception of mathematical modeling 

The two parameters, namely x number of balls and y number of players, are put into three equations 

according to usual volleyball practices seen above. Then, each of the three identified equations has 

been shown as follows.  

1. First case: x=y 

This equation means, one ball per player. So, this might be extended infinitely as x=y=n, n ∈ N*. 

In practice, in this equation, the limiting factor is the number of available balls. So, the number of 

ball (s) should be less than or equal to y, so, x ≤ y.  

The equation x=y can also be applied if the team is split up into subgroups where the number of 

subgroups should be less than or equal to y. 

This is used to perform individual skills with specific training. The operative scheme should be a 

continual practice without interruption, also, to be executed in movement, running form, etc., while 

keeping the ball during the entire allocated time for practice. 

2. Second case: x = y-1 

This equation corresponds to the model set for one ball per two players. When the number of players 

is increased from one to two, and the number ball remains 1, the equation becomes as follows: with 

x = 1 then x = y – 1.  

So, if y = 2, then the equation becomes x = 2 – 1 = 1.  

The ball is circulating back and forth from player 1 to player 2 as shown below. 

 

 

Figure 2: The lining scheme with two players 

The equation x = y – 1 is verified with any ball game’s rule. Indeed, using one ball, two teams or two 

players are competing to score. Based on the above, the total of x balls can be calculated as x = y/2 

or 2x = y where x = n, n ∈ N*.  

Player 1 Player 2 

Ball flow 
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In other words, if there is only 1 ball available, the only way to perform is to divide the players into 

two subgroups. 

3. The triangle models: x = y - 1 

When a triangle scheme is used, normally, each summit should represent one player. The equation 

remains as x = y –1 except the number of players becomes y = 3. So, from the equation x = y –1, the 

required number of balls is x = 3 – 1 = 2. In fact, it varies from 1 to 2. So, the number of balls is 

formulated as 1 ≤ x ≤ 2.  

 

Figure 3: The triangle model with the use of one ball for three players 

The article will focus more on the model of 3 players with 2 balls in order to highlight the potential 

offered in ball sports by the introduction of the concept of continuous and discontinuous ball flows, 

which is developed in the following section.  

Section B. The mathematical models enhanced by the introduction of the concept of continuous2 and 

discontinuous3 circuits.  

This section shows to what extent the concept of continuous and discontinuous circuits is introduced 

in each of the three equations presented above.  

The first model where x=y. 

In the case of a one-ball player, the player touches or hits the ball continuously for himself. And then, 

intermittently, once the ball has left the player's hand(s) or foot(s), he makes an additional side to side 

gesture. 

The second equation where x = y - 1 

With the case of one ball for two players, where x = y - 1, the ball is supposed to be in continuous 

circuit framework. This means that the ball is circulating back and forth from one player to another 

one. Then, if a second ball is introduced in the circuit per intermittent time, it is called a discontinuous 

situation. So, we shall have x = 2 and y = 2 + 1 = 3, although, the equation should remain the same 

as stated earlier: x = y - 1. 

In this case, to determine the moment to go into discontinuous mode, the principles of the interval by 

introducing the temporal notion have been set. 
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Figure 4: The lining scheme with 2 players in continuous circuit and a third player added in the work 

out2 

From the above scheme the following interval development has been set. 

   

 

Figure 5: The interval development of a discontinuous scheme where x = y = 1 

3. The third equation: x = y – 1. The triangle scheme with three players is shown below when a fourth 

player is added as one discontinuous circuit T4 in the work out. So, the equation remains as x = y–1, 

where y = 4. So, x = 4 – 1 = 3 balls. 

 
2 A ball flow is said to be continuous if the exchange between two or more players stops only when 

one or the other player loses the ball. It is also valid for one-player practices with either a ball launcher 

whose cessation depends on the choice of the player or the stock of balls, or wall bounces for which 

the interruption will be caused by the loss of the ball. 

3A ball flow is said to be discontinuous if the exchange between two or more players does not follow 

a regular rhythm. 
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Figure 6: The triangle model with one discontinuous case 

Then, if this modelling is extended using two triangles' schemes linked with one alternating 

discontinuous circuit. The result is as follows: 

 

Figure 7: The triangle model in one discontinuous circuit associated with two continuous circuits 

Therefore, the structure results in an infinite sequence of continuous circuits linked to discontinuous 

circuits. Each time one more sequence of a continuous circuit associated with a discontinuous circuit 

is added to the series, the original equation x = y – a1 with a1 = 1 becomes x = y – a2 with a2 = 2 … 

So, theoretically x = y – an where n ≥ 1 (n ∈ N*). The introduction of the concept of continuous and 

discontinuous circuits was intended to show its potential to improve the practice and the technical 

and tactical performance of players and or of the whole team in ball sports. Especially, the concept 

enables players to go beyond the acquisition of stereotyped technical and tactical gestures. Thus, by 

combining continuous with unexpected discontinuous ball circuits, there is an opportunity to create 

close to reality game situations requiring appropriate anticipation from the players. Indeed, keeping 
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possession of the ball or dispossessing the opponent of the ball with an aim at any cost to scoring is 

the goal of any ball game (Teodorescu, 2013). 

Discussion  

The modeling objective has been performed from the use of two key parameters, which are the 

number of balls and the number of players. As shown before, these two parameters were put in the 

form of an equation of first degree. Thus, either the number of balls or the number of players could 

be put as an unknown parameter. 

Regarding the first model x = y, where y = 1 (Figure 2), if the number of balls allows it, individual 

exercises can always be done. Dribbling, shooting at the basket, shooting at the goal, for example, 

are all covered by the model. The use of ball stocks is justified here, as well as a plan for the recovery 

of the balls at the end of the shooting series. Their number is included in the overall ball count. 

Concerning the second model, x = y - 1 where y = 2 (Figure 3), it models the structure and rules of 

any sport with balls. In other words, a given ball game takes place on a playing field and pits two 

entities against each other with a single ball. Thus, the ball used for the restart in case of loss of the 

ball game is only a practical modality to optimize the practice time. In short, the ball that is used for 

motor acquisition or confrontation is the only necessary ball that circulates between the opponents. 

Moreover, this model also serves to justify the use of a wall as a rebound, the latter being considered 

as a practice partner. The model also includes all the ball throwing equipment or other diversionary 

tools the players use.  

Finally, the third model, x = y - 2 where y = 3 (Figure 4), is interesting. Indeed, it can be used 

according to the case that arises either with y = 2 or y = 3. The advantage of this last case is especially 

the optimization of the number of balls touched by unit of time. 

The advantage of these three models is the fact that they can be executed according to variable 

distances between the targets and the players or in a precise space that requires a given technical 

specialization. Furthermore, they rationalize the use of time, promote better performance monitoring, 

and improve the general organization of learning and development programs for any ball sport. 

In addition, the introduction of the discontinuous and continuous circuit models adds to the interest 

of using these three equations mentioned before. Thanks to these additional models, the exercises to 

be given to the practitioners can be more varied and complex. Indeed, they aim to provide adequate 

technical and or other deficiencies adjustment or to improve performance in a particular sequence of 

the game.  

Ultimately, optimizing the learning of basic techniques and tactics, as well as the quest for individual 

and collective performance, all now require a good calculation of the number of balls and the number 

of players involved.  

In view of the above, a better understanding of these ball games through these simple equations will 

benefit physical and sports education from an early age, as well as the pedagogy of mathematics in 

schools. The study led by Masson (2018) stated that students are more motivated when it comes to 

mathematics education in conjunction with physical education and sports (pp. 10–20, 48). That of 

Blanchouin and Pfaff (2019), recommended that teachers can succeed in introducing interdisciplinary 

connections between mathematics and sports education in school “by multiplying the number of 
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examples” (p. 79). So, the mathematical models developed above offer the possibility of a variety of 

game settings as part of a school physical education program with ball sports. Furthermore, the 

literature from GREFEM (2018). emphasizes that the use of experienced contexts encountered, for 

example, in the province of Quebec, confirms their importance in supporting the teaching of 

mathematics. Consequently, according to Gréhaigne et al. (2020), these models can play as a 

“student-centered teaching approach that promotes contextual learning and the use of small-sided 

games” (p. 231). In this sense, they will enable students to design different game situations 

themselves, as well as calculating the number of balls and players to put in the various compartments 

and phases of the game. Finally, these equations can be easily combined with score calculations, 

performance records and statistics, which are, among other things, commonly used in physical 

education and sports in conjunction with mathematics. 

Conclusions 

This paper presented three mathematical equations, based on volleyball practice patterns, which 

contribute to a better understanding of ball sports. This knowledge opens opportunities to support the 

learning of ball sports from an early age and the teaching of mathematics in conjunction with physical 

education and sport at school. Then, the modelling with the combination of continuous and 

discontinuous circuits presents its potential to develop unpredictable skills required in forming 

outstanding player. Indeed, the latter are at the heart, among others, of the spectacle, the excitement 

in the game and ball sports industry. As stated by Parlebas (2005), “Mathematical modeling offers a 

breakthrough, a new way of looking at sports games that suggests setting more intimately the 

legitimate nature of game structures with the meaning and symbolism of the actions they perform” 

(p. 43).  

References 

Blanchouin, A. (2019). Interdisciplinarity EPS-Mathematics Around the concept of length in Cycle 

2 Proposal of an approach and teaching contents (PIUFM EPS, IUFM de Créteil, Centre 93). 

Nathalie PFAFF PIUFM Maths, Créteil, Centre 93, 65–79.  

Delalandre, M. (2010). L’Expertise scientifique au service de la performance, Terrains & 

Travaux,1(17), 127–142. ENS Paris-Saclay.   

GREFEM (Groupe de Recherche sur la Formation et l’Enseignement des Mathématiques). (2018). 

Contextualizing to teach mathematics: A training issue. Annales De Didactique Et De 

Sciences Cognitives (Varia 2018), Varia 2018, 69–105.   

Gréhaigne, J.-F. (2018). Time, movement and understanding the organization of the game. eJRIEPS 

[Online], Hors-série N° 2 | 2018.   

Gréhaigne, J.-F., & Nadeau, L. (2015). Le mouvement, la dynamique du jeu et l’espace-

temps. Ejrieps, HORS-SÉRIE N° 1 | 2015, P. 2.  

Gréhaigne, J.-F., & Godbout, P. (2012). About the dynamics of the game. . . in soccer and other team 

sports, 26, 130–156).   

Gréhaigne, J.-F., & Godbout, P. (2014). Dynamic systems theory and team sport 

coaching. Quest, 66(1), 96–116.   

Masson, S. M. B. (2018). Can Physical Education interact with mathematics to promote 

mathematical learning? Vol. p. 10–20. University of the West Indies. Internal school ESPE 

of Martinique. Master 2 professional thesis. https://dumas.ccsd.cnrs.fr/dumas-02289424. 

Parlebas, P. (1985). Modélisation du jeu sportif: le système des scores du volleyball Mathématiques 

et sciences humaines, 91, 57–80. 



 150 

Parlebas, P. (2005). Modélisation dans les jeux et les sports. Mathématiques Et Sciences Humaines 

[Online] Open Edition, 170, 12–43.   

QA International. (2009). Sports and Games. Visual dictionary. 

http://www.visualdictionaryonline.com/sports-games/ball-sports.php 

Teodorescu, L. (2013). Principles for the study of common tactics in team sports and their correlation 

with the tactical preparation of teams and players. eJRIEPS [Online], 28. 

https://doi.org/10.4000/ejrieps.2934 

Zerai, Z., Gréhaigne, J.-F., & Godbout, P. (2020). Student understanding in team sports: 

Understanding through game-play analysis. Athens Journal of Sports, 7(4), 215–234.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.visualdictionaryonline.com/sports-games/ball-sports.php
https://doi.org/10.4000/ejrieps.2934


 151 

 

Section 4 

 

STEM & TEACHER 

EDUCATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 152 

The importance of mathematical modeling for learning mathematics: 

Reflecting on the experience from one course for prospective 

elementary teachers 

Amel Kaouche1 

 

Mathematics represents a bridge between many fields of science. These relationships confirm the 

important role of mathematics in being able to solve problems (situations) in daily life. This paper is 

related to my academic research and teaching, which include: talking about mathematical modeling 

and teaching a modeling course to third-year university students. In general, I share my teaching 

experience: the difficulties encountered by the students, their successes as well as my successes and 

my recommendations to present and future teachers of primary school mathematics. 

Keywords: Problem-solving, mathematical modeling, primary education.  

 

Introduction 

I have been teaching the Mathematical Modeling course to third-year university students for several 

years. It is a course that prepares students to use mathematical modeling in their teaching. It also 

teaches students how to solve problems related to everyday life as well as word problems. The course 

offers a mixture of both the mathematical background that they have already been exposed to in 

previous courses by ensuring a good comprehension of different branches of mathematics and the 

interdisciplinary links between mathematics and other disciplines.  

The current program of mathematical training for the future primary school teachers includes five 

mathematics courses, of which the modeling course is the last. 

The Mathematical Modeling course plays an integrative role in the teaching and learning of 

mathematics. It allows future teachers to carry out mathematical modeling projects to solve complex, 

concrete problems.  

By reviewing, in the context of applications, much of the material seen in previous courses that the 

future teachers were exposed to in a more theoretical context, this course’s objective, among other 

things, is to be able to solve everyday problems: students learn how to move from the concrete (the 

written problem) to the abstract (the mathematical model) and back to the concrete (the interpretation 

of the mathematical solution). Also, be able to solve word problems (school problems).  

In this course, students are introduced to the steps and processes involved in transforming a word 

problem into a mathematical model.  

Students learn how to solve everyday problems. To achieve this, we use different mathematical 

techniques for the same problem. We also build on the knowledge acquired in previous mathematics 

courses, i.e., arithmetic, algebra, geometry, and statistics.  

 
1Université de Moncton, New Brunswick, Canada 

Amel Kaouche: amel.kaouche@umoncton.ca 

mailto:amel.kaouche@umoncton.ca
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Here are some examples seen in this course: 

1. Applications in finance: simple interest, compound interest, mortgage, etc. 

2. Applications of the theorems of Euclidean geometry in everyday life including the 

Pythagorean theorem, Thales’ theorem, etc. 

3. Use of the least common multiple and the greatest common divisor to solve certain 

concrete problems. 

4. Use of logical reasoning in certain concrete problems. 

5. Use of certain notions in statistics to solve everyday problems.  

6. Use of prime numbers in coding. 

7. Applications of the theorems of spherical geometry.  

8. Applications in cryptography with concrete problems. 

Even if the notions of differential and integral calculus are not part of the program of future teachers, 

there are optimization calculations that are introduced in a visual way. Examples include solving 

problems of everyday life related to bound rates, calculating the optimal values of a function (which 

represent a situation in real life), using the notion of derivative, and calculating the area of a surface 

using certain methods of numerical integration and the notion of primitive. All this with the aim of 

making future teachers aware of the complexity of mathematical concepts. 

In some problems, mathematical concepts such as graph theory are quite useful for modeling. In other 

problems, tools such as combinatorics are little known or unknown by the students. Students are led 

to deal with problems in a specific context which goes a bit further than what they have been exposed 

to in class. 

This article is divided into several sections. We first begin with a bit of history concerning changes 

linked to the use of problem-solving in the teaching of elementary mathematics. Thereafter, we 

propose four steps to follow for problem-solving in addition to tips students can use in order to better 

understand each step. Throughout this explanation, we provide strategies that may be used to solve 

mathematical problems as well as simple examples to further students’ understanding. These 

strategies are then followed by a review of the university course on mathematical modeling where I 

share my teaching experience, the difficulties that students have encountered in the course, my 

challenges as an instructor, and the successes that both students and myself have encountered in the 

context of the course. Finally, I provide recommendations for teachers and future primary school 

teachers of mathematics as well as people who teach courses similar to the modelling course I teach.  

A bit of history 

Many changes took place during the 1980s regarding the use of problem-solving in elementary 

mathematics education. Previously, the teaching of mathematics was limited to solving problems 

presented in the form of statements. Examples of this include solving problems at the end of a chapter 

on multiplication or one of the four mathematical operations, namely addition, subtraction, 

multiplication, and division. Students would simply take the numbers presented in these problems 

and multiply them.  
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The situation changed after the 1980s. Indeed, teachers began presenting some problem-solving 

strategies as well as steps to follow in order to solve said mathematical problems. The latter required 

more than one mathematical operation. However, the statements themselves lacked the information 

necessary to solve them. Despite these changes, no improvements were seen because students could 

still not solve the problems. 

Mathematical problems should be related to real life and not merely number operations. According 

to D'ambrosio (2003), it is highly recommended by education professionals to give importance to 

concepts and processes in the teaching of mathematics while pursuing the development of 

mathematical skills.  

The use of situational problem-solving in elementary mathematics education allows students to 

understand new mathematical concepts and acquire new skills rather than merely presenting 

mathematical problems only after teaching a certain subject.  

We must increase the ability to solve problems in the teaching of mathematics in elementary school. 

This process is very important because it increases the possibility of students being capable of 

applying their mathematical knowledge to solve problems in everyday life.  

 

Mathematics problem-solving steps 

Here are four important steps I use in my course for the problem-solving process, which can be used 

in primary schools:  

Step 1: Understand the problem. 

Step 2: Make a plan. 

Step 3: Execute the plan. 

Step 4: Return to the problem. 

Note that communication, justification, and reflection are very important parts of the process of 

solving mathematical problems.  

Here we have presented tips that allow for a better understanding of each step. 

Step 1: Understand the problem 

The first step in the problem-solving process is to try to understand the problem. Depending on the 

grade level of the students, they should read the problem several times or be asked to read it aloud to 

the class. In the case of beginners, the teacher can read the problem aloud several times. Then, the 

teacher can ask their students to explain the problem in their own words (using their own language). 

The next step is to ask students about the problem data (what they know) and the problem question 

(what they need to find or look for).  

We often see that students encounter challenges during this first step in the process. Indeed, language 

can be a barrier for many students, especially in a diversified class.  

The first challenge is intended for students who have the mathematical problem’s language as their 

second language, and also for students experiencing language difficulties who understand the 

mathematical concepts and work on them appropriately. These students require support adapted to 

their reality. There are a few possible solutions to this challenge. These students can be invited to use 
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concrete materials (sticks, tokens, geometric shapes, etc.) or visual elements to contextualize the 

mathematical problem. Furthermore, the teacher may encourage the pairing of these students with 

students who speak the language fluently. Another solution is to encourage these students to answer 

the questions orally or through drawing. 

The second challenge is the complexity of mathematical language, which can have a great influence 

on the degree of students’ understanding. For example, it is more difficult to understand a negative 

statement than a positive statement. Also, expressions such as most or at least may prove difficult to 

understand as would the use of mathematical terms having more than one meaning, especially when 

their meanings in mathematics are different from their meanings in real life. Examples of this include 

difference, figure, total, product, factor, etc. 

Here is a simple example: For some students, the word total means addition, but this is not always 

the case in mathematical problems. 

Example 1: Adam has several bookmarks. He decided to give two to each of his four friends and 

keep five for himself. 

What is the total number of bookmarks that Adam had?  

Note: Here are some student answers: 2 + 4 + 5 (they added all the numbers in the math problem). 

While the correct answer is: (2x4) + 5. 

In this case, the problem can be related to language (how to identify the word total and thus add 2, 4 

and 5), but also to the lack of ability to identify the true mathematical structure of the problem ((2x4) 

+ 5). 

In my course, I draw students’ attention to the importance of identifying the mathematical structure 

of the problem and not just getting hung up on language. 

In summary, mathematics is not only calculations, factorizations, and developments, it is a language 

in its own right! 

Step 2: Make a plan 

The Ministry of Education, Leisure, and Sports (MELS, 2009) offers several strategies applicable to 

problem-solving that help deepen the understanding of the mathematical aspects of said problem. In 

other words, to learn to move from the concrete (the word problem) to the abstract (the mathematical 

model). 

Strategies Used to Solve Mathematical Problems: Inspired by (Dacey et al., 2014) 

Here are some strategies, which can be used by students after they have an idea of the problem to be 

solved: 

- Translate the concrete problem into mathematical language: numbers, equations, formulas, 

etc. This allows the students to establish a good connection between a situational problem and 

mathematical language. Afterward, students can solve the mathematical equation in question. 

- If possible, simplify the problem: Doing so is a way to help students understand the problem. 

To do this, students can replace the numbers in the problem with simpler numbers. For 

example, students may use numbers with fewer digits, replace fractional numbers with 

integers, etc. Teachers should not drown the problem with complex numbers and large 
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calculations. Once the problem has been solved, students can return to the original problem 

with more complex numbers. 

- Represent the data of the problem with images, tables, lists, etc.: Students need to be able to 

gather the data of a problem in the correct manner. They can represent the data of a 

mathematical problem with drawings, examples, or tables to better visualize the relationships 

between them. 

- Bring out (extract) a regularity if it exists: The study of numerical or non-numerical 

regularities (shapes, colours, etc.) is very important in learning mathematics, and students 

learn it at a young age such as in kindergarten when they are exposed to very simple problems 

and age-appropriate language. An important strategy in solving mathematical problems is to 

reproduce patterns. To do so, students must first find (understand) the relations and deduce a 

rule. Then, they can predict the outcome. 

- Bring out the information contained in a list, diagram, image, table, etc.: An important step in 

the problem-solving process is students’ ability to interpret a list, diagram, image, table, etc. 

- Predicting or estimating, in some mathematical problems, can be a good choice: Trial and 

error can be good strategies when students are struggling. Estimates help students verify a 

guess (narrow the range of their guesses). If a guess does not work with a smaller number, 

they can try a larger number and vice versa.  

- Represent the mathematical problem concretely: In some problems, it is essential to simulate 

a situation to better understand the problem in question. Students can manipulate concrete 

objects or draw a picture to illustrate the mathematical problem. 

A good way to empower students is to present them with mathematical problems that can be solved 

in more than one way (more than one option). So, if one strategy does not work, students can try 

another. This allows them to learn that when things do not work on one side, they must look at the 

other side (we must not lose hope!). 

Example 2: (inspired by Dacey, 2014) 

Here is a problem that can be solved using different strategies. 

Rassim has five bags of sweets, with six sweets in each bag. He takes two candies from each bag to 

give to his brothers.  

How many candies does he have left? 

Note: Students may use different strategies to solve this problem. 

Some students use a drawing to represent the problem’s data while others will solve the problem 

without drawing. The details in the design differ from person to person. 

Some students will include a lot of detail in their drawings. For example, they may include drawings 

of bags, candies, and brothers. They may even illustrate the candies taken from each bag and given 

to the brothers, and they will write a simple mathematical equation using addition: 4 + 4 + 4 + 4 + 4 

= 20. 

Others may be satisfied with simply drawing the five bags, the six candies, and the candy taken from 

each of the bags. They will then translate the problem into a mathematical equation. 
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Again, some will write a simple math equation using multiplication: 5 x 4 = 20. Others will write a 

complex math equation using both multiplication and subtraction: (5 x 6) – 10 = 20. 

Students who choose to solve the problem without drawing will instead write two separate 

mathematical equations to arrive at a solution. The first equation represents the total number of 

candied using addition: 6 + 6 + 6 + 6 + 6 = 30. Next, they will subtract the ten candies given to the 

brothers using the following equation: 30 – 10 = 20. 

In any case, many students will make the following error (this is common in primary and even 

secondary school): 6 + 6 + 6 + 6 + 6 = 30 – 10 = 20 (which means: 6 + 6 + 6 + 6 + 6 = 20). 

We notice here that the students have extended the mathematical equation instead of writing a new 

one, which shows that they did not understand the meaning of equality. 

Teachers must address this type of problem as it can impact the student’s mathematical understanding 

for quite some time.  

Step 3: Execute the plan 

To explain this step, we'll start with the following example. 

Example 3: (inspired by Bernier et al., 2016 [Documents reproductibles]; Cléroux et al., 2016) 

[Documents reproducible]):  

An Olympic-size swimming pool is being built. To meet current standards, the pool must be 

rectangular in shape and have 10 swimming lanes 2.5 m wide. If the pool has a perimeter of 150 m, 

what are its dimensions and what is the total length of rope required to separate the lanes? 

Once you've gone through step 1, which involves understanding the problem (what information you 

have and what you want to find), you can move on to step 2, which involves drawing up a plan: since 

the pool is rectangular in shape and we’re looking for its dimensions, we’ll need to find the width and 

length of the pool. To find the total length of the rope to separate the lanes, we first need to find the 

length of the pool, then the number of separators for 10 lanes. Which brings us to step 3: executing 

our plan. We start by finding the width of the pool, as we have more information about it:  Pool width 

= 2.5 × 10 = 25 m. 

Once we have the width of the pool and know also that the problem has given us its perimeter, we 

can calculate its length. Using the relationship between the perimeter of a rectangle, its width, and its 

length, we find:   

P = 2 × (a + b)  

150 = 2 × (25 + b) 

 b = 50 m (where a, b and P are respectively the width, length, and perimeter of the pool) 

Now we just need to find the total length of the rope to separate the lanes. Since we now know the 

length of the pool, all we need to do is find the number of dividers for the lanes. Caution: Since there 

are 10 lanes, we only need 9 dividers (many students will take 10 dividers instead of 9): Total length 

of rope = 50 × 9 = 450 m. 

A good tip for teachers (and future teachers) is to insist on the importance of leaving traces of 

students’ work (communicating their approach and their reflections and justifying them). To help 
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them remember their thoughts, teachers can encourage students to take notes as they work. In this 

way, students will establish good work habits, which will be useful during the entirety of the 

educational journey (Goldenberg et al., 2003). 

To avoid situations where the student finds the correct result without understanding the problem in 

question, the teacher must see the student’s approach to remedy any errors and communicate the 

correct approach. 

It is essential to the practice of mathematics to encourage students to work in small groups or at least 

in pairs. This way, students can communicate, share their thoughts, deepen their understanding, learn 

new mathematical concepts, and even recognize their errors and correct them. For example, a student 

notices that their friend has prepared a table summarizing the written problem, so they decide to make 

one too (to help them understand the problem better). 

Teachers need to emphasize the importance of student explanation and mathematical reasoning for a 

problem and not just a key answer!  

In this way, students will recognize the importance of their learning and the value of mathematics in 

everyday life. 

Step 4: Go back to the problem 

This is the final step in the problem-solving process, but it is not the least because it opens the door 

for further learning. Unfortunately, students give less importance to this step. The latter will allow 

them to learn how to move from the abstract (the mathematical model) and back to the concrete 

(interpretation of the mathematical solution). At the end of solving the problem, students must write 

a complete sentence and not just a number that represents the result of their mathematical calculation. 

To encourage the students, the teacher can ask them to write their own problems like those they have 

already solved. In this way, students will consider the problems to be their own creations! This will 

arouse a greater curiosity in them. 

As a simple example, we can go back to example 3 (step 3), after having gone through the three steps 

and completed all the calculations.  Students are asked to write a complete sentence, clearly answering 

the questions in the problem: The dimensions of the pool are 25 m by 50 m, and 450 m of rope is 

needed to separate the lanes. 

A look back at the university course in mathematical modeling 

Returning to the mathematical modeling course that I teach to students in their third year of the teacher 

education program, I want to draw attention to the fact that what has helped me, among other things, 

to succeed with this course is my mathematical background, my pedagogy also acquired over the 

years, my experience in secondary, college, and university education. But also, the fact that I have 

three children attending primary and secondary schools. The continuous monitoring of my children's 

learning at school, their challenges, successes, questions, obstacles, mistakes, reactions to situations 

at school, and experiences, has helped me enormously in preparing my course (in order to properly 

orient my students (our future teachers)). 

Here are a few examples: 
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- After his math test, my son realizes that he didn’t take the time to read the last question, so he didn’t 

understand it and his answer was far from the right one. Hence the importance of reminding students 

to read (and reread) the problem before solving it. So, identify the problem data (the starting point), 

the arrival point, take the time to understand certain mathematical terms, etc. 

- My son arrived home with his math exam paper corrected by his teacher (underlining in red his 

mistakes and the points he lost). However, he wasn’t able to tell me the correct answer for the numbers 

he missed. Hence the importance of always telling students the correct answer to a problem (and not 

just pointing out their mistakes). 

- While reviewing his math notes, my son comes to me wondering why we can simplify this 

expression: ((5 × 2) ÷ (7× 2)) but not this one: ((5 +2) ÷ (7+2))! That's why it’s so important to take 

the time to explain why! 

- My son comes home angry, telling me he’s lost points on his math test even though all his answers 

are correct. After checking, I realized that he had done a mental calculation and had just written down 

the last answer without leaving any trace of his work. I then explained to him the importance of 

communicating his approach and justifying it on the basis of what he had learned at school. 

- My son is very disappointed with his math result because according to him, even though he answered 

all the questions correctly, he lost points. After checking, I realized that he had omitted the unit! I 

explain to him that his answer, 40, would have much more meaning if the unit, meter, had been added. 

- Trying to answer the questions for his maths homework, my son didn’t know what to do to compare 

fractional numbers, decimal numbers, improper fractions, and percentages. So, I explained to him 

that you have to write them in the same form before making the comparison. 

- Among the challenges encountered by many students is the transition from the concrete (the written 

problem) to the abstract (the mathematical model), or finding the simplest possible mathematical 

model, for example, the use of the least common multiple or the greatest common divisor in solving 

certain problems, see the following example: 

Example 4: (inspired by Bernier et al., 2016 [Documents reproductibles]; Cléroux et al., 2016 

[Documents reproductibles])  

This summer, Matthew and Franc rented neighboring cottages at the same time for 92 days. Matthew 

mowed his lawn every 6 days, while Franc did so every 8 days. If Matthew and Franc both mowed 

their lawns on the day they arrived, how many times did they mow their lawns on the same day? 

In this type of problem, it's rare for students to think of solving the problem using the least common 

multiple of 6 and 8, i.e., LCM (6, 8). 

- Another challenge for our students is to go from a written problem to a chain of operations, but also 

to respect the order of operations in the calculation of this chain of operations, see the following 

examples: 

Example 5: (inspired by Bernier et al., 2016 [Documents reproductibles]; Cléroux et al., 2016 

[Documents reproductibles])  

Solve the following problem using a chain of operations. 
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Diana has 3 packages of 6 candies each and Lily has 40 candies. Lily gives 6 pieces of candy to her 

brother. The two friends collect all the remaining candy and divide it equally between them. How 

many pieces of candy does each of the two friends now have? 

In this kind of problem, the student may omit the parentheses or even make a mistake in the order of 

operations when calculating this chain of operations: (3 × 6 + 40 - 6) ÷ 2. 

The same applies to the following example: 

Example 6: (inspired by Bernier et al., 2016 [Documents reproductibles]; Cléroux et al., 2016 

[Documents reproductibles])  

Solve the following problem using a chain of operations.  

The organizers of the Halloween Ball sold 100 tickets at $6 each. The host's salary is $250. The cost 

of renting the hall is $150. How much money do the organizers have left? 

In this case, the student may make a mistake in the order of operations for calculating this chain: 100 

× 6 - (250 + 150). 

To do this, you need to take the time to explain how to make the transition from a written problem to 

a chain of operations and insist on respecting the order of operations when calculating a chain of 

operations. 

First, I explained the four steps for solving mathematical problems with simple examples to the 

students in my course so that they could become familiar with their use. I also insisted on the 

importance of their application in this course and of being able to teach them to their future students. 

The students greatly appreciated using these steps in their problem-solving. Indeed, with these steps, 

the students know how to start solving the problem, what to do next, and how to finish. They had to 

start with simple resolution problems in order to use these steps well and then move on to more 

complex (but not necessarily more difficult) problems. 

Then, I explained the different strategies employed in solving a problem. Students were able to benefit 

from these strategies in order to solve different problems. In this way, our students will be well 

prepared to teach these strategies to their own students. Using these strategies as a student can be 

quite beneficial later as a teacher. 

Some challenges (difficulties) 

Here are, amongst others, some difficulties that my students encountered in this course as well as my 

challenges as a teacher. Students were not accustomed to solving problems in mathematics compared 

to other mathematics courses: concepts, notions, definitions, theorems, and calculation exercises 

(mathematical operations) unrelated to everyday life situations. They were not used to going from the 

concrete (the written problem) to the abstract (the mathematical model) and back to the concrete (the 

interpretation of the mathematical solution).  Also, they were not accustomed to using different 

mathematical techniques and strategies for the same problem. 

Another challenge in this course is that it was necessary to build on the knowledge acquired in 

previous mathematics courses, namely the arithmetic courses, algebra courses, geometry courses, and 

statistics courses in order to be able to solve the problems. However, I noticed that there was a lack 

of depth in the understanding of certain concepts or simply an oversight. It was necessary to make 
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reminders of these concepts. This is, after all, a good thing because students need these reminders to 

solidify their knowledge as future teachers. 

Despite their maturity, the students found that the mathematical language can sometimes be complex 

and that it sometimes confused their understanding of the problem which allowed them to put 

themselves in the shoes of a younger student who could be lost with the complexity of this 

mathematical language. 

The language of a mathematical problem, whether it is in French or another language, remains a 

learning barrier even at the university level for students whose language is a second language and for 

students with language difficulties even if they understand the mathematical concepts.  

One of my challenges in this course is choosing problems that have the right level of comprehension 

for my students. It was necessary to avoid the absence of difficulty for the students to not get bored, 

as well as an excess of difficulty which can cause frustration. 

Student successes 

Once the students are accustomed to or comfortable with the steps and strategies used for solving 

mathematical problems and are more aware of the challenges, I suggest that they create problems like 

the ones already seen. Among the successes of students is to deepen their understanding of certain 

mathematical concepts as well their usefulness in everyday life. Another success is for students to be 

able to answer their future students’ question: What is mathematics for? 

The biggest achievement for students in this course is being able to create their own problems and 

then create an oral presentation for the rest of the class. This is their favorite step because they 

consider it a practical internship in mathematics: Being able to create their own problems, explain 

them to their colleagues, and discuss together the different strategies to follow to solve them. From 

my perspective as a teacher, seeing students fly on their own with confidence, joy, pleasure, and hope 

for their future is my greatest achievement. 

Conclusion 

I would like to emphasize the importance of the modeling course in the training of future teachers (in 

their university career). The difficulties encountered by my students in this course are only a 

projection of the difficulties encountered by elementary school students in mathematics lessons. 

Therefore, finding solutions to improve the learning of mathematics in elementary school begins with 

providing good training for our future teachers. 

Here are some recommendations (advice) to give to teachers and future teachers of elementary 

mathematics and even to people who teach a course similar to mine: 

- Perseverance is a fundamental aspect of learning in general and problem-solving in particular! 

- We must consider the differences between each student. Each student thinks and reacts 

differently to a problem. 

- We must teach students not to be discouraged and to try another strategy if the first does not 

work. 

- Find a happy medium! The teacher should choose problems with a challenge appropriate to 

their students’ level of understanding. If the problem lacks difficulty, students may become 
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bored. Excessive difficult may cause frustration and anxiety in students and should be avoided 

(Sylwested, 2003; Tomlinson, 2003; Vygotsky, 1986). 

- Communication, justification, and reflection are very important in the process of solving 

mathematical problems. Remind students to always leave traces of their work and to write 

down their processes and thoughts rather than just noting their key answers. 

- If you want to teach a new mathematical concept, it is strongly recommended to start with a 

simple problem (reduce the degree of difficulty), with numbers of a reasonable size (two-digit 

numbers rather than three-digit numbers or numbers of one-digit and not two-digit for the 

younger students depending on their level), and simple calculations (not too lengthy) so as 

not to bury the concept. 

- Encourage students to read the problem several times to better understand it. 

- Encourage students to explain the problem in their own language. 

- Use drawings, tables, diagrams, lists, etc., to better understand the problem and successfully 

solve it. 

- The problem answer must be a complete sentence and not just a number at the end of the 

problem-solving. For example, instead of writing 6 as the answer, it is strongly recommended 

that students write: Lucas ate 6 apples this week.  

- Never forget units! A number, 12, at the end of a problem-solving session, does not make 

much sense. It will be necessary to give more precision (12 pens, 12 oranges, 12 monkeys, 12 

meters, 12 litres, etc.). 

- Differentiate between different types of time. For example, Syrine states school is at 8:15 am, 

and I worked today for 8:15 hours. 

Mathematics is present and important everywhere in our lives. Teaching mathematics in schools does 

not stop with the concepts and formulas to be learned. It is necessary to go beyond these notions to 

better understand the usefulness of mathematics in our lives and its applications to other fields.  
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Using modelling to make interdisciplinarity in teaching STEM visible: 

Implications for teacher education 

Dragana Martinovic1 and Marina Milner-Bolotin2 

 

In this paper, we propose a novel curricular approach for integrating mathematics and sciences and 

highlight the importance of mathematical modelling and interdisciplinarity for teaching and learning 

STEM. We also give some ideas on how technology can connect mathematics, arts, and sciences. The 

main focus is on introducing the Educational Framework for Modelling in STEM (EF4M in STEM) 

we developed to describe both teacher and student roles in the modelling cycle. This framework and 

the example of how it could be used in teaching STEM through modelling would be of interest for 

teacher educators, professional development facilitators, and pre-service and in-service teachers of 

any STEM subject.  

Keywords: Modelling, science, mathematics, technology and engineering (STEM) education, 

educational framework for modelling in STEM (EF4M in STEM), interdisciplinary STEM education.  

 

Introduction 

In this paper, we discuss possibilities for not only multi-disciplinarity, but also interdisciplinarity in 

teacher education and challenge a conventional view on Science, Technology, Engineering, and 

Mathematics (STEM) teacher upbringing. Multi-disciplinarity draws on knowledge from different 

disciplines while still keeping them separate. Interdisciplinarity, on the other hand, integrates 

knowledge from different disciplines in order to solve complex problems. Our overarching claim is 

that the existence of the STEM acronym does not guarantee a coherent and cohesive approach to 

interdisciplinary STEM teacher education and consequently K-12 STEM education (Martinovic & 

Milner-Bolotin, 2022). We start by reflecting on recent changes in mathematics and science education 

at K-16+ levels. Then, we describe how the present educational system is not necessarily conducive 

to the adoption of authentic and humanistic multi-disciplinary and interdisciplinary approaches to 

science and mathematics learning (Galili, 2011; Hottecke et al., 2010). The ongoing resurgence of 

calls to create robust STEM education for the 21st century and to build bridges between the different 

STEM disciplines (Ben-David Kolikant et al., 2020; Li et al., 2020) indicates that these goals have 

not been achieved yet.  

As mathematics (DM) and physics (MM-B) teacher educators, we believe that it is important to 

develop approaches for STEM education and STEM teacher education that consider the 

epistemological and pedagogical commonalities and tensions between these fields. For example, in 

schools, “mathematics and science have often proceeded along parallel tracks, with mathematics 

focused on ‘problem solving’ while science has focused on ‘inquiry’” (Li & Schoenfeld, 2019, p. 7). 
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Discussing with the students why and how this happens might alleviate anxiety over teaching or 

learning STEM. Moreover, educating students in STEM by teachers who likely lack the necessary 

multi-disciplinary content background and have limited knowledge in the history and philosophy of 

STEM, is also problematic. Consequently, many students perceive STEM as a family of loosely 

connected subjects. The students rarely have an opportunity to acquire the skills and abilities to 

traverse the STEM subjects’ boundaries. Thus, it is not surprising that despite the ongoing STEM 

education efforts, the successful and sustainable implementation of authentic STEM pedagogies has 

stagnated over recent decades (Chachashvili-Bolotin et al., 2021; Chachashvili-Bolotin et al., 2016). 

The tensions between teaching different STEM subjects are clearly visible in the current mathematics 

and science education (Ben-David Kolikant et al., 2020; Martinovic & Milner-Bolotin, 2020; 2022). 

While in Canada, teacher education varies from province to province, we have observed some 

common challenges in preparing future STEM teachers, which could be alleviated through 

collaboration within and between multi-disciplinary teams of educators. We also observed that the 

expectation that the use of technology will automatically coalesce the STEM disciplines has not fully 

materialized.  

This realization and our experience as long-term mathematics and science educators motivated us to 

consider modelling as an authentic pedagogical approach that can help glue STEM disciplines in a 

meaningful and productive way (Martinovic & Milner-Bolotin, 2021). We define modelling “as a 

cyclical process of generating, testing, and applying knowledge while highlighting the 

epistemological commonalities and differences between the STEM disciplines” (p. 279). In a 

modelling cycle, the students generate, test, and apply knowledge that is new for them and sometimes 

even new for their teachers. 

We agree with Hallström and Schönborn’s (2019) view that “models and modelling can be used as a 

basis to foster an integrated and authentic STEM education and STEM literacy” (p. 1). Kertil and 

Gurel (2016) emphasize that teaching modelling requires more interpretive skills from teachers, 

which is a challenge that could be addressed through multi-disciplinary collaborations, such as ours. 

In one of our latest publications (Martinovic & Milner-Bolotin, 2021), we explored the four well-

known bodies of knowledge: Kolb’s Experiential Learning Cycle (Kolb, 1984); Gardiner’s 

Framework for Epistemic Control (Gardiner, 2020); Model-Based Inquiry Learning (Windschitl et 

al., 2008), and the framework for teaching modelling (Carlson et al., 2016). As a result, we proposed 

the Educational Framework for Modelling in STEM (EF4M in STEM), which describes both teacher 

and student roles in the modelling cycle. We further used this framework to suggest how it could be 

implemented in pre-service teacher education and in-service teacher professional development. This 

framework may be helpful in addressing some of the challenges mentioned above. By introducing 

students and teachers to the process of modelling, we can start building the common STEM language 

and move beyond the acronym to create authentic, productive, and humanistic STEM learning 

environments. 

STEM education: What it is and what it isn’t 

Traditionally, mathematics assumed a service role while engaging students with other STEM subjects 

(e.g., using examples of mathematical procedures in computer programming; linear and quadratic 

functions in kinematics; Euclidian geometry in optics; molecular graphs or logarithmic functions in 

chemistry; projective geometry in drawing area maps in geography, etc.). In that way, mathematics 



 165 

was used but rarely taught or carefully examined in other STEM subjects. For example, science 

teachers often refrain from discussing mathematics behind the scientific concepts, such as pH level 

in chemistry, sound level in physics, or earthquake scale in geography in order to simplify science 

lessons and open them to the students with lower levels of mathematical proficiency (Milner-Bolotin 

& Zazkis, 2021). 

These experiences align with Niss’s (1994) description of the societal role of mathematics as the 

relevance paradox. On one side, mathematics is ever more important and present in all aspects of life, 

while at the same time remaining largely invisible, staying in the background. Even the scientists in 

other fields, 

appreciate the mathematics they make use of but simply think of it as a necessary or convenient 

tool in the service of purposes to which mathematics is of no independent interest. In this respect, 

mathematics is invisible like the wood that we cannot see because of all the trees (p. 372).  

This widespread view of mathematics affects mathematics education as well, justifying it from a 

utilitarian perspective. Therefore, Williams et al. (2016) ask: “How do we differentiate an 

interdisciplinary approach to science that brings mathematics in as a tool, from that which brings in 

mathematics as a generalization of scientific concepts?” (p. 14). Their topical survey of 

interdisciplinary mathematics education allows these authors to advance the idea that, 

“interdisciplinary mathematics education offers mathematics to the wider world in the form of added 

value (e.g., in problem solving), but on the other hand also offers to mathematics the added value of 

the wider world” (p. 13).  

The intricate relationship between mathematics and science is akin to the relationships between 

theory and application, ideal and real, or imaginary and concrete. Niss et al. (2007) use the term extra-

mathematical world to describe the part of the real world to which some concrete problems and ideas 

apply. For Niss et al., “in any application of mathematics a mathematical model is involved, explicitly 

or implicitly” (p. 4). During a modelling cycle, one moves between the domains of mathematics and 

extra-mathematical world iteratively, starting from defining the questions and aspects of the extra-

mathematical world one is interested in, then mapping them into the world of mathematics, where 

initial solutions are made, and then trying them out in the extra-mathematical world, and so on. 

Nowadays, other areas are finding their place in the mathematics curriculum (e.g., coding/computer 

programming; modelling through the use of real-life data; etc.). One noticeable change in the current 

Ontario mathematics curriculum (Ministry of Education Ontario, 2020) is inclusion of knowledge 

that may belong to other subjects or is extracurricular; a reversal of what was previously happening 

with respect of mathematics in other subjects. Despite the widely accepted notion that STEM subjects 

are closely related, every STEM discipline has its own epistemology, which makes teaching STEM 

challenging. This is even more challenging if the policy makers start adding more letters to the 

acronym, such as in STEAM, STEMM, and others (Herranen et al., 2021). 

We maintain that labeling something is insufficient to make it a coherent and cohesive concept. 

Answering the following questions might elucidate the connections between the STEM disciplines 

and contribute to the design of meaningful STEM learning environments: When we use real-life data 

in the mathematics class, do we teach mathematics or STEM? When we teach physics and use 

mathematical concepts to solve problems and do mathematical calculations, do we teach STEM? 

When we use technological tools to collect, analyze, and model data, do we teach STEM? How do 
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we delineate STEM versus non-STEM? And what does it mean to teach STEAM or STEEM 

(Herranen et al., 2021)? 

STEM teacher education 

The interplay between the epistemology and pedagogy in STEM education 

To study a discipline, one needs to understand its epistemology; to teach a discipline, one also needs 

to master its pedagogy. Epistemology investigates how we come to know something: What is the 

difference between knowledge and belief? What is the process of knowledge production? How are 

disciplinary beliefs and knowledge formed, justified, and validated?  

Driver et al. (2000) argue that  

the claim ‘to know’ science is a statement that one knows not only what a phenomenon is, but also 

how it relates to other events, why it is important, and how this particular view of the world came 

to be. Knowing any of these aspects in isolation misses the point (p. 297).  

Pedagogy investigates the methods and practice of teaching: How to deliver the curriculum? How do 

students learn in different environments? How to assess their knowledge and skills to promote 

learning? How to use various technological tools to support student learning (Ben-David Kolikant et 

al., 2020)? 

Teacher education and professional development need to consider both epistemology and pedagogy 

in the context of research, practice, and policy. Gardiner’s (2020) metacognitive framework for 

epistemic control (Fig. 1) encourages educators “to go beyond often fixed adversarial critical thinking 

approaches and to develop an epistemic position based on inclusive collaboration and emergent 

creativity” (p. 1). This framework was originally developed to facilitate collaborations between 

students from different epistemological backgrounds. It asks for metacognitive introspection from all 

collaborators. When learners face a complex problem or work in an interdisciplinary team, they need 

to move through the states of (a) epistemic awareness, (b) humility, and (c) empathy, in order to reach 

(d) epistemic control. By understanding what and how members of their discipline know and what 

the limitations of that knowledge are, one develops epistemic awareness and humility. Seeing that 

others’ ways of knowing are valuable develops epistemic empathy. After one opens up to multiple 

approaches, perspectives, and practicing multiple ways of knowing, one gains epistemic control. 

 

Figure 1: Visualization of Gardiner’s (2020) metacognitive framework for epistemic control 

Developing a vision for STEM teacher education 

STEM education researchers appreciate the importance of epistemology. For example, Moon and 

Rundell Singer (2012) suggest replacing the focus on “a content-specific definition of STEM” with 

“a more epistemic one—the sources, strategies, or practices from which…STEM knowledge comes 

and…is shared” (p. 32). Then, the educators could invest into delivering “an assemble of practices 

and processes that transcend disciplinary lines and from which knowledge and learning of a particular 

kind emerges” (p. 32). 
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Our vision for STEM teacher education considers modelling as a glue that keeps different STEM 

disciplines together. As a process, modelling involves aspects that are pertinent to all four STEM 

fields (e.g., inquiry, quantitative and design thinking, use of technological tools, multiple 

representations, algorithms, and models). Yet, in mathematics education, modelling may be easily 

confused with problem-based learning and problem-solving, which might hinder its utility (Bloom, 

2015). In science education, also related to modelling, inquiry-based learning is often inadequately 

taught (Windschitl et al., 2018). Both in schools and in teacher education programs, inquiry-based 

learning may be driven largely by one’s curiosity, superficial and surface understanding of the 

content, while lacking the “epistemic framing relevant to the discipline” (p. 941). In our decades-long 

work with future mathematics and science teachers, we have noticed that their beliefs about the nature 

of STEM disciplines are often taken for granted, creating a space for overlooking how teachers’ 

personal epistemological stances affect their teaching (Hofer, 2001). Since modelling is often 

associated with dealing with ill-structured problems, like Hofer, we are concerned that university 

graduates are not well equipped or motivated to solve such problems. Hofer suggests that “education 

that focuses on the progression of epistemological thinking has the potential for addressing this 

critical need” (p. 369).  

For mathematicians, scientists, and engineers, modelling is a powerful methodology, along with 

design and experimentation (Ortiz-Revilla et al., 2020). It may be seen as “the most relevant 

characteristic of the scientific mode of knowledge production” (p. 870), as no modern scientific 

research is possible without modelling. Educational researchers are full of praises for modelling. 

Apparently, it leads to remarkable learning gains, especially in underserved student populations and 

students at risk, or as Lesh et al. (2010) write, “modeling is virtually unparalleled in the successes 

that it has produced” (p. 283). Lesh and Yoon (2007) highlight how “models & modelling 

perspectives reject the notion that only a few exceptionally brilliant students are capable of 

developing significant mathematical concepts unless step-by-step guidance is provided by a teacher” 

(p. 163). These are sound reasons to include modelling in the mathematics curriculum and expand to 

STEM education in general. 

Implementing modelling in STEM education: Challenges and opportunities  

Modelling that uses mathematical tools is challenging for both students and teachers (Xu et al., 2022). 

The main issue arises from its reliance on the competences (such as reliably collecting and using data; 

exploring scientific phenomena, making financial decisions, and computer modelling), that deviate 

from those that belong to the traditional mathematics curriculum. It is of no surprise then, that in 

classrooms there were often recorded evident departures from the curriculum expectations involving 

the modelling process. In addition to challenges regarding the time needed to organize a full 

modelling cycle and assess it, the teachers are found to experience mathematical, pedagogical, and 

epistemological challenges (Manouchehri, 2017). Based on Manouchehri’s analyses of a 25-hours 

long professional development with the middle and high school teachers in the US, mathematical 

challenges included difficulties of identifying variables, what information to keep, when to 

approximate and use heuristics, and when to use formulas and exact algorithms. Pedagogical 

challenges included teachers’ confusion about short- and long-term outcomes and assessment of 

modelling, especially since most modelling activities are organized as group work. And finally, 

epistemological difficulties related to perceived subjectivity of the consideration of what is important 
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and what is not, is the model adequate or needs more refinement, is the background knowledge 

adequate, and so on.  

Lesh and Yoon (2007) highlight how 

the modelling cycles that problem solvers go through generally involve systematically rethinking 

the nature of givens, goals, and relevant solutions steps - or patterns & relationships that are 

attributed to surface-level data. Therefore, the most significant things that are being analyzed and 

transformed (or processed) are students’ own ways of thinking about givens and goals – and 

patterns and regularities that are attributed to (rather than being deduced from) the information 

that is available. (p. 167).  

Similar ideas are emphasized by Carrejo and Marshall (2007), who caution that if not adequately 

prepared, “many teachers may [rely on] direct instruction methods that do not facilitate conceptual 

understanding or abstraction [and even] abandon an inquiry-based approach altogether” (p. 48). 

Pollak (2011) also finds it problematic when teachers are too prescriptive: 

The heart of mathematical modeling, as we have seen, is problem finding before problem solving. 

So often in mathematics, we say “prove the following theorem” or “solve the following problem.” 

When we start at this point, we are ignoring the fact that finding the theorem or the right problem 

was a large part of the battle. By emphasizing the problem finding aspect, mathematical modeling 

brings back to mathematics education that aspect of our subject and greatly reinforces the unity of 

the total mathematical experience (p. 64). 

We conclude then that modelling is not a straightforward process but is one that could be conducted 

in different ways. Teachers would benefit from having more clarity on their, versus their students’ 

roles during modelling. The framework that we developed attempts to clarify what teachers need to 

do prior, during, and after the modelling activity, and when and how teachers should allow students 

to own the process. 

Introducing educational framework for modelling in STEM  

Our Educational Framework for Modelling in STEM (EF4M in STEM) consists of six stages. It 

focusses both on teachers and students; it is cyclical and iterative and aims at generating working 

hypotheses through modelling. As the students advance through the stages, their control over the 

modelling process increases, while the teacher becomes more like a facilitator (Fig. 2). 

Four educational approaches lay the foundation for EF4M in STEM (see Table 1) (Martinovic & 

Milner-Bolotin, 2021). Each one of them centres on a different aspect of learning. First, as discussed 

earlier, Gardiner’s (2020) framework for epistemic control focuses on epistemology and how learners 

negotiate epistemological differences during their collaborative work. Second, Kolb’s Experiential 

Learning Cycle (1984) sheds light on how students work individually as well as in groups while being 

engaged in active experimentation. Kolb’s cycle also emphasizes the recursive nature of learning: to 

acquire a deeper understanding and skills learners return to the same concept multiple times going 

through the sequence of experiencing, reflecting, thinking, and acting stages. 
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Figure 2: EF4M in STEM (Martinovic & Milner-Bolotin, 2021) 

Third, Windschitl et al. (2008) suggest a five-step Model-Based Inquiry (MBI) approach in teacher 

education and professional development, “[t]he goal of [which] is to develop defensible explanations 

of the way the natural world works” (p. 15). The authors underline the importance of the initial step 

in inquiry, when a teacher chooses a phenomenon, introduces it to the students, and makes it relevant 

to students’ experiences. Classroom discourse is of ultimate importance for the MBI, as it follows a 

true scientific approach to inquiry.   

Finally, the fourth framework for teaching modelling in elementary grades comes from Carlson et al. 

(2016). It consists of three phases—posing questions, building solutions, and validating conclusions. 

Before the first phase, the teacher develops the activity and anticipates potential problems. During 

the lesson, the teacher organizes student groups, monitors them and regroups them when necessary. 

After the students complete the modelling activity, the teacher may revisit it to consolidate knowledge 

or to make relevant curricular connections.  

Table 1: Foundations of EF4M in STEM 

 Foundational works and their focus Authors 

1 Gardiner’s framework for epistemic control describes how 

people from different fields collaborate. 

Gardiner (2020) 

2 Kolb’s learning cycle describes how students learn through 

hands-on experiences. 

Kolb (1984); Morris 

(2020) 

3 Model-Based Inquiry (MBI) informs teachers how to guide 

students through scientific inquiry. 

Windschitl et al. (2008) 

4 Framework for teaching modelling in elementary grades 

provides pedagogical ideas about conducting modelling 

activities with young students. 

Carlson et al. (2016) 
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Each foundational theory provided an important insight into the modelling in STEM, allowing us to 

address learning, teaching (pedagogy), and epistemology relevant for STEM. A more detailed version 

of EF4M in STEM is given in Martinovic and Milner-Bolotin (2021, p. 293). 

STEM modelling examples 

Below, we provide two examples of STEM modelling activities appropriate for middle school, to 

illustrate how our modelling framework can be implemented in practice. The first example explores 

the investigation of Newton’s laws and specifically the concept of buoyancy and its applications (Fig. 

3). The second example examines the concepts of motion through one-dimensional kinematics. These 

examples could be discussed in middle school or expanded to secondary school classes.  

Example 1: Investigating the force of buoyancy through modelling  

The goal of this modelling activity is to explore the concept of buoyancy and its applications in 

mathematics, art, science, and engineering. After examining the concept through modelling activities, 

the students will be asked to apply it onto one aspect of everyday life they find interesting and 

relevant, such as the applications shown in Figure 3. 

Stage I: Preparing and building the background knowledge: Every child who has ever stepped a foot 

into a bathtub, a swimming pool, or an open water, has experienced buoyancy. Yet, understanding 

buoyancy requires learners to master and combine a number of abstract concepts and be able to 

describe the relationships between them mathematically. 

In the first stage, the teacher prepares materials, resources, tools, technology, and instruments suitable 

for the planned activities. For example, the teacher prepares containers with water and solutes (e.g., 

salt), scales, rulers, a collection of objects of different densities, shapes and sizes, and computers with 

access to simulations software and the Internet. The teacher should consider students’ prior 

mathematical and science knowledge or the new knowledge that they will need to develop to 

accomplish this modelling activity. To be able to facilitate this activity, the teacher needs to explore 

different applications of this concept in other fields, such as arts, science, history, etc. (Fig. 3) and 

consider those that are suitable for the grade level and the curriculum. In addition, the teacher might 

explore educational research literature on possible student difficulties and misconceptions in 

understanding buoyancy, force, vectors, linear functions, ratios and proportions, multivariable 

expressions, etc. The students may be invited to speak about their experiences with floating or 

sinking, swimming, rowing, or flying and to discuss ways in which to develop understanding of 

related natural phenomena.  

Buoyancy is a force exerted on an object submerged in a fluid (i.e., gas or liquid). The magnitude of 

this force depends on the density of the fluid ( 𝜌fl ), the volume of the fluid (𝑉displ fl) displaced by the 

submerged object, and on the acceleration of gravity (𝑔), as shown in Eq. 1. 

𝐹buoyancy = 𝜌fl𝑔𝑉displ fl                                          (1) 

The concept of density is often confused with weight, even though they are absolutely different physical 

concepts. Object’s weight is the downward force of gravity (Eq. 2) applied to the object by the Earth. 

It has both the magnitude and direction, and is measured in Newtons (or pounds). On the other hand, 

object’s density is a scalar quantity that represents the amount of mass in a unit of volume. It is measured 

in kg/m3 or g/cm3.  Dense objects can be heavy or not, depending on their volume, and very heavy 
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objects might not be dense. Thus, a barge can be very heavy, but its average density is less than the 

density of the surrounding water, thus the barge floats. To understand if an object is going to float or 

sink, one must compare the magnitude of the gravitational force (Eq. 2) acting on the object downward 

with the magnitude of the force of buoyancy acting on the object upward (Eq. 1).  

𝐹gravity = 𝑚obj𝑔 = 𝜌obj𝑉object𝑔                               (2) 

Notice, that while the equations describing these forces might look similar, they bear important 

differences. Thus, in order to predict if the object will sink or float and by how much it will be 

submerged, one must compare its density with the density of the surrounding fluid. Since the object 

cannot displace more than its own volume, in order to float, its density must be less than the density 

of the surrounding fluid. 

In STEM classes, teachers might be tempted to provide students with these formulae for the sake of  

a “pedagogical shortcut,” however, there is ample research evidence that demonstrates students 

struggle understanding these concepts when exposed to them directly. Moreover, solely memorizing 

the equation describing the force of buoyancy is insufficient to develop a meaningful understanding 

of the phenomenon and be able to answer conceptual questions (Mazur, 1997). Thus, modelling 

provides an excellent opportunity for the students to explore this phenomenon and learn how to apply 

it to understand the world around them.  

Stage II: During this stage, the concept of density is examined by experimenting with different 

concentrations of salt dissolved in water and using different objects whose volume and mass are 

determined mathematically (Fig. 3).  

 

Figure 3: Various applications of the concept of buoyancy in science, art, history, geography, and 

engineering 

For example, a number of variously shaped wooden blocks that have different volumes and masses 

can be used and their densities calculated. The students can also find objects of similar volumes but 

various densities. Another possibility is to use a PhET simulation application (Fig. 4) called Density 

(PhET Research Team, 2023).  
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Figure 4: A screenshot of PhET computer simulation that allows students to examine the concept of 

density and model the relationship between an object’s volume, mass, and density 

The teacher organizes students in groups, recognizing their strengths, interests, and experiences. 

Some group members may be asked to approach the problem as a physicist, the other as a chemist, a 

biologist, and a mathematician. They need to work as a team in accordance with Gardiner’s (2020) 

ideas. The teacher instructs students on the meaning of epistemic control and coordinates the whole 

class discussion. 

Stage III: During this stage, students begin their work in groups to develop a plan of how they will 

investigate buoyancy, what information they might require and how they will represent it 

symbolically, graphically, and verbally. The teacher might support them in sharing relevant resources 

or intervening when necessary. 

Stage IV: The groups propose different working hypotheses that describe the force of buoyancy. The 

students also discuss how they can model this force and how they can conduct experiments to test 

their models. They propose the experiment, including the ways of data collection and analysis. Thus, 

they attempt to describe the phenomenon of buoyancy quantitatively and justify how certain physical 

quantities might influence it. The teacher supports students, encourages them to compare and contrast 

their views, but does not provide the answers. For example, all “physicists” in the class may critique 

the proposed hypotheses. 

Stage V: During this stage, the students test their hypotheses and modify them accordingly. They also 

consider various applications of buoyancy. For example, how it might explain the rise in the water 

level as a result of melting polar icecaps or how it can be used to understand different weather patterns 

or used in visual art or cooking (Fig. 3).  

Stage VI: In this stage, the students consolidate their knowledge and might decide to return to the 

previous stages. The teacher helps them not only to summarize what they have learned but also 

uncover unanswered questions or potential misunderstandings. For example, the teacher might point 

their attention to the role of the force of buoyancy and the fact that the density of ice is smaller than 

the density of water in the marine life around us. They might ask new questions or decide to explore 

different applications of this phenomenon in various STEM subjects or in everyday life. The students 

might also collaborate on sharing their knowledge with others through poster presentations, group 

jigsaw discussion or other approaches. 
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Example 2: Investigating motion through modelling 

Details of this modelling activity are available in the facilitator’s guide for modelling in STEM 

(Milner-Bolotin & Martinovic, 2022), a document we created to support professional development 

of teachers. To describe motion, one needs to know the object’s position at all times. To do so, one 

must account for how fast and where the object is moving, as well as its initial location and time when 

the motion started. For example, a car can move with the speed of 10 m/s northward or southward. 

While the car’s speed is the same in both cases, its direction is not. To describe this motion, we need 

to account for the direction, as well as the speed, which in physics is described by the concept of 

velocity. Why is that so? If you drive for 10 minutes northward and then for 10 minutes southward, 

you will end at the same place you started; at that moment your car’s displacement (change in 

position) will be 0, although you spent 20 minutes driving and travelled the total distance of 12 km. 

An important skill, even for middle school students, is to be able to distinguish between average vs. 

instantaneous speed, speed vs. velocity, reading a map vs. reading a graph, and comparing ratios. 

Throughout the activity, the teacher pays attention to the common student difficulties (Doorman, 

2005): the difference in which the term “average” is calculated in physics compared to mathematics; 

that for curves and lines,  

The average rate of change over an interval is calculated in the same way for both graphs, but 

the instantaneous rate of change is not. For curves you have to take a limit, draw a tangent or 

derive a function, while for straight lines all instantaneous rates of change are identical to the 

average rate of change. (p. 24)  

The fact that standing still is not represented as a point but rather as a horizontal segment on a 

position/time and speed/time graphs (in the latter case it coincides with a segment on x-axis) is also 

confusing. Doorman writes, “Standing still and moving with a constant velocity are similar from a 

graphical point of view. Both graphs have a horizontal velocity-time graph” (p. 25). Motion detectors 

could help students to embody graphs as representations of their movement. Video recording motion 

and analyzing it collectively would help clarify or alleviate possible students’ misunderstandings. 

More details of this activity and how it can be organized in accordance with the EF4M in STEM can 

be found in English and French at the Mathematics Knowledge Network website (Milner-Bolotin & 

Martinovic, 2022). 

Conclusions 

The education research community is still trying to unpack STEM teaching at various levels of 

schooling. In our recent book chapter (Martinovic & Milner-Bolotin, 2022), we describe five different 

approaches to organizing STE…M (e.g., STEAM, STEMM) programs and learning environments, 

including their feasibility for already existing teacher education and professional development 

programs. Our multi-year collaboration has shown that a way forward in any authentic multi-

disciplinary teaching approach may be to “re-emphasize the nature...of [each] STEM [discipline]—

as a sense-making activity” (Li & Schoenfeld, 2019, p. 1) and to strive towards enriching the students’ 

experiences of the discipline.  

Modelling activities enhance student engagement in learning and provide opportunities to integrate 

STEM subjects meaningfully and productively (Martinovic & Milner-Bolotin, 2021). Once the 

students create their models, these need to be tried and tested in a real environment. In other words, 
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students conduct simulations, succinctly described in Alan Pritsker’s (1989) keynote conference 

address: 

Simulation works because we abstract reality and because we, as problem solvers, are realistic 

modelers and analysts. We combine the engineering concepts of design and control with the 

experimental approach of the scientist. We use mathematics to solve problems and verify 

solutions. We see problems as opportunities. We are not hung up with optimization because we 

know our models are approximate. We don’t worry about pitfalls until we are in sight of the 

solution. …We build models, use them, make a recommendation based on simulation results and 

implement the recommendation including the measurement of improvements obtained. We 

support on-going and continual improvement not just improvement (p. 2). 

In Figure 3, we showed some ideas for making cross-disciplinary connections when teaching 

buoyancy. However, when engaging students in learning concepts that could be approached from 

different angles, it is important to consider disciplines’ epistemological underpinnings and the 

perceptions of all the stakeholders (e.g., teachers, teacher educators). It is not only about learning the 

content; it is also about changing perceptions! Teachers need to experience STEM education as 

learners first and would benefit from having a framework that ties STEM pedagogy, epistemology, 

and curriculum together. Our EF4M in STEM can fulfil this role as it applies to teaching either 

separated or integrated STEM disciplines and opens opportunities for teacher collaboration. The 

inquiry courses that are part of many contemporary teacher education programs are well suited for 

implementing this framework. For example, the Teacher Education Program at the University of 

British Columbia has three 3-credit inquiry courses that could be used for promoting interdisciplinary 

STEM education (https://teach.educ.ubc.ca/).  

One approach to dealing with the stated issues is to take part in a STEM Discipline-based Education 

Research (DBER; Henderson et al., 2017) movement. It is grounded in the idea that education in each 

of the STEM disciplines benefits from research that unites the specific content, culture, and methods 

of the discipline with the general discipline of education research. The authors further envision 

establishing a cross-discipline STEM DBER alliance, as a way for improving STEM research and 

teaching, and for creating a unified voice to dialogue with policy makers. 

In order for an activity to be authentically STEM, more than one subject in it needs to become visible 

(Niss, 1994) and not just be used unconsciously as a utilitarian tool. For example, using a quadratic 

equation formula to find the time it takes an object in a free fall to reach the ground, does not make 

this physics activity, STEM activity. However, when mathematics modelling produces new insights, 

generalizations, or deeper understandings of scientific concepts and their applications (Williams et 

al., 2016), then it becomes STEM learning. In this case, a relatively simple mathematical derivation 

shows why uniformly accelerated one-dimensional motion produces a parabolic dependance of 

position on time, and a linear dependance of velocity on time. We call on educators to consider how 

modelling can open new authentic opportunities for meaningful learning making all STEM subjects 

and their interconnections not only important, but visible.  
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Bridging the practice-to-research chasm for in-service STEM teachers 

Heather McPherson1 

 

Education reforms encourage mathematics and science teachers to leverage student thinking through 

inquiry practices. These practices focus on developing students’ understanding of mathematical and 

scientific concepts to develop their disciplinary practices and fluency in core ideas, how this 

knowledge is constructed and the socio-scientific implications of STEM processes. However, teachers 

need meaningful professional development to develop inquiry teaching skills. In this study, I present 

an analysis of an academic year-long collaborative learning community. Results indicated that when 

novice and experienced teachers co-construct inquiry practices, novices assume the role of expert as 

they model inquiry for experienced teachers who are yet inquiry novices. This dynamic intermingling 

of roles can generate pedagogical innovation. This paper extends research on how collaborative 

professional development can generate supportive structures for STEM high school teachers, and 

help scholars and policymakers understand complex professional learning dynamics.  

Keywords: Professional learning community, STEM teachers, inquiry-based teaching.  

 

Introduction 

Educational reform curricula encourage STEM teachers to incorporate critical thinking strategies into 

their lessons while introducing elements of science, technology, engineering, and mathematics 

(STEM). In Quebec, Canada, this includes proposing solutions to real-world problems, research, 

open-ended experiments, and engagement with interdisciplinary projects (Ministère de l’Éducation 

du Loisir et du Sport, 2007). Furthermore, UNESCO urges teachers to incorporate these pedagogies 

into their professional repertoires to facilitate students’ ability to translate this knowledge into action 

(United Nations Educational Scientific and Cultural Organization, 2021). 

The focus of inquiry-based teaching practices is to support student thinking by emphasizing practices 

such as posing questions, designing investigations, analyzing data, and developing evidence-based 

models from data (Windschitl et al., 2018). Inquiry-based (IB) teaching can leverage student thinking 

about mathematical and scientific concepts to develop their disciplinary practices and fluency in core 

ideas while helping students embody positive identities as STEM learners (Lampert et al., 2013; 

Windschitl & Stroupe, 2017). 

IB teaching practices in mathematics classrooms take time to assimilate and perfect (Jao & 

McDougall, 2016), and in science classrooms, they “are rare, even in the classrooms of experienced 

teachers…[where] there is a focus on activity rather than sense making and that questioning, in 

general, is among [the] weakest elements of instruction.” (Windschitl et al., 2012,  p. 881). Instead 

of the dialogic co-construction of learning that is the foundation of inquiry-based learning (IBL), 

predominant classroom discourses follow the Initiate-Response-Evaluate model of questioning where 

teachers initiate a question, a student responds, and the teacher evaluates the response (Nystrand et 

al., 2003; Sherry, 2018; Windschitl et al., 2018). In contrast, implementing IBL asks that teachers 

develop professional practices that are grounded in educational theory, so they can initiate classwork 

that incorporates inquiry process skills, collaborative work, analysis, and synthesis of STEM 

concepts.  
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Regrettably, there has been a dearth of professional support for in-service teachers to develop these 

sophisticated teaching skills, and thus their enactment remains problematic (McPherson, 2022; 

Windschitl et al., 2018). High-quality collaborative professional development (PD) such as a 

professional learning community (PLC) can facilitate expanding teachers’ epistemological and 

pedagogical knowledge (Darling-Hammond et al., 2017; Hargreaves, 2019; Kruse & Johnson, 2017; 

Schmidt & Fulton, 2015), which is essential if teachers are to develop these practices.  

This paper examines how in-service science and mathematics teachers collaborate to co-construct 

and enact inquiry-based pedagogies. This study explores two research questions. The first is “what 

were the tensions that teachers experienced as they struggled to develop inquiry teaching practices?” 

The second question is, “how did teachers’ epistemological beliefs about teaching shift as they 

engaged, shared, and critically examined their professional practice in a PLC?” Understanding how 

teachers work in a collaborative PD model can help scholars and policymakers understand 

professional learning dynamics. This work extends current research on how STEM high school 

teachers support each other in a PLC.  

Methodology and methods 

This study employed ethnographic methodologies to analyze the world of teacher participants, the 

social and cultural structures, and processes that they engaged with as they developed inquiry-based 

teaching strategies (Davies, 2008; Van Maanan, 2011). Participant discourses highlighted their school 

cultures and how a community of teachers might reshape this culture. Through an ethnographic 

approach, I explored participants’ fears, doubts, and frustrations with their professional practice to 

understand how their tensions of practice could be redressed as they worked to shift school culture. 

I followed purposive sampling methods (Maxwell, 2013; Seidman, 2013) to recruit eight high school 

mathematics and science teachers. Teachers participated in an eight-month PLC. from four 

Anglophone Québec high schools. Participants included three novice and five experienced teachers. 

The novice teachers were in their first or second year of teaching, while the in-service teachers’ range 

of experience was from 15–26 years. Some teachers taught science while others taught most of their 

teaching load in mathematics with one science course added. Ayesha, a first-year teacher was trained 

to teach science and accepted an art teaching position halfway through the school year (see table 1). 

Table 1: Profile of PLC participants 

Teacher Nancy Liam  Vera Giulia Carol Steven Zofia Aysha 

Years 

Experience 

15 26  15 1 1 2 years 

part-time 

0 0 

Teaching 

Subject 

Grade 

10 

Science 

Grade 9 

Science 

 Grade 

10 & 11 

Science 

Grade 9 

Math, 

Grade 10 

Science 

Grade 10 

Science 

Grade 7 

& 9 

Math, 

Grade 10 

Science 

Grade 8, 

10, 11 

Science,

Grade 8 

Math 

Substitute 

Science 

and Math 

Teacher 

Grade 7-9 

Art 

Participants from four schools were part of the public sector; one was private. Two of the four public 

schools were large, exceeding 1,500 students. The two public schools and the private school were 

smaller, with populations of fewer than 300 students. All schools were in bilingual suburban 

communities. Teachers’ motivations for joining the PLC included an interest in developing their 

reform practices, and they were enthusiastic about learning through collaboration with colleagues.  

Eight PLC meetings of 2.5 hours occurred on average once per month from October to May in the 

afternoon. Teachers’ focus was on developing inquiry-based teaching practices. During meetings, 
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teachers discussed inquiry-based teaching practices following a video club format in which teachers 

discussed and analyzed how they enacted inquiry-based pedagogies (Borko et al., 2008; Horn & 

Little, 2010; van Es et al., 2014). Eight of the teachers shared two 10-minute segments of video-

recorded classroom practices followed by participant discussions and analysis of observed inquiry 

practices. Aysha was not able to video-record teaching lessons as she was not teaching full time, and 

Liam was unable to generate a second teaching video because of time constraints imposed by end-of-

year high stakes exams.  

In the PLC meetings, teachers discussed questioning techniques, focusing on eliciting, pressing, and 

probing student thinking, generating opportunities for students to co-construct evidence-based 

explanations based on observations and data, and positioning students to compare scientific 

explanations to the accepted scientific phenomenon.  

The data corpus included 16 semi-structured pre- and post-PLC interviews that were video-recorded 

and transcribed. The purpose of the initial interview was to gain a general sense of teachers’ 

professional backgrounds, and epistemological beliefs and pedagogical practices. The second 

individual interviews focused on a PLC’s effectiveness in developing inquiry-based (IB) practices, 

and on how participants negotiated the work of collaborative learning in a PLC. PLC activities, 

interactions, and informal conversations were video recorded, and portions of the meetings that 

focused on teachers’ collaborative discourse were transcribed. The portions of PLC meetings where 

teachers presented their video recorded classroom teaching activities were not transcribed. 

I developed salient concepts into themes using the constant comparative method (Braun & Clarke, 

2006) and I analyzed and interpreted the themes using an inductive thematic approach to theorize 

patterns relating to the research questions (Braun & Clarke, 2006).  

Findings 

Two central themes emerged from the data: teachers’ struggles to enact inquiry-based pedagogies 

and the importance of supportive structures during an in-situ learning experience. The professional 

trajectories of the PLC participants fell into two very different groups. The first group included three 

experienced teachers. The second group, the five novice teachers, had been taught IB practices in 

their pre-service university program.  

Experienced teachers 

The first interviews with experienced teachers suggested they were neophytes when it came to 

inquiry-based practices, which was not surprising, given the dearth of PD opportunities that focus on 

developing professional practices in situ.  

The pre-PLC interviews with the three experienced science teachers captured their epistemological 

stance to IB teaching. Of the experienced teachers, Nancy alone expressed an interest in incorporating 

IBL into her teaching repertoire, and she was the most open and eager of the experienced teachers to 

update her practice:  

Nancy: I haven’t done it as much as I would like. I need to practice it more. 

Vera, a confident and successful teacher, was openly dismissive about the potential to use IBL: 

Vera: A time constraint. I feel that that’s just a waste of time. 

In the initial interview, Vera talked about her high success rate on end-of-year exams, which, in her 

opinion, validated her reliance on traditional teaching practices based on lecturing and note-giving.  

Liam, like Nancy and Vera, was aware of IBL. He was on the fence, believing that his practice of 

talking with his students and asking multiple IRE questions was sufficient. He had rejected 
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incorporating IBL into his lessons because he lacked the training, although he admitted that 

“Teaching the same old way that we’ve always taught before is not necessarily a good thing.”  

The experienced teachers made significant strides forward with questioning skills—pressing students, 

eliciting student thinking, and using a driving question to anchor lessons. For example, during a PLC 

meeting, Nancy discussed how she developed IBL in a grade 10 science class. Her students engaged 

more frequently with cognitively demanding peer discussions:  

Nancy: They’re starting to think more. I need to practice. It’s gonna take a couple of years. 

Once I’m comfortable, it’ll be better. 

In this excerpt, Nancy suggested that it takes time and practice to develop IBL, which is consistent 

with the literature—mastering IBL is time-consuming, and requires ongoing PD, which is one reason 

that these practices are rarely seen, even in the classrooms of experienced teachers (Windschitl et al., 

2018). Nancy also noted that introducing a novel pedagogy such as IBL poses difficulties to students 

as well as the teacher since students are unused to being questioned, pressed, and probed for high-

level thinking. 

Vera, like most of the PLC participants, chose to work on eliciting student thinking by pressing and 

probing students for understanding while maintaining a public record of their thinking. Vera, who 

had identified as a “confident individual” in the first interview, was less than confident when she 

attempted to teach a physics investigation of lenses using IBL. During a PLC meeting, she articulated 

her discomfort with incorporating IBL into her lessons.  

Vera: So yeah, it’s not my finest moment, but clearly, I conveyed the issue the message 

because they all did well on their test [laughter]. 

Author: So, you said it’s not your finest moment. What did you think wasn’t fine about it? 

Vera: I didn’t feel as prepared and organized...Like I was just like, okay, I gotta make sure 

I have to mention this. Ask more questions like I was trying to think of all the things 

that you are telling us as opposed to just being in my own head. I had other heads 

talking to me [laughter]. So, at the same time, it’s like, oh crap, I forgot what slide 

I have next. And then, now oh no, I have to remember to do this, and so it just I just 

got lost up here. And as a result, the that’s why I was like, oh, oh, wait first. Talk 

about this. So, I just got lost. 

Author: So, what would you like to improve on as you watched that? 

Vera: The voices in my head [laughter]. 

Author: But they should always be there, right?  

Vera: Yeah, but it would be nice if it was just mine. Like I don’t mind if the multiple 

personalities of me are talking, but not the other ones like, oh my God, I can’t 

disappoint Heather. And I’m not writing things down. They always have good 

questions, but I was like, aghh. And so, I just stopped. Putting myself in one big 

endless loop. So, if I can just tune all that stuff out, then I have no problem.  

It is clear from Vera’s self-analysis from the PLC transcript that she was uncomfortable with a new 

style of teaching. As she got lost in the process of IB teaching, she said that her thinking was 

disorganized. She struggled to sustain the logic of her lesson, which she lost as she focused on IBL. 

However, she remarked on her evolving practice, celebrating her progress: 

Vera: Now, I do a progression of teaching, as opposed to shoving everything at the 

beginning. 

Overall, the experienced teachers reported changes in their pedagogy. Nancy’s process with IBL was 

methodical, incorporating new teaching techniques in incremental steps as she acknowledged that the 

process of developing her professional practice would likely take a few years. Additionally, Liam 

spoke about changes to his teaching, although he also acknowledged that not much had changed. He 
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decided not to incorporate driving questions in his daily practice, and he did not experiment with 

model-based inquiry. However, he was more mindful of elevating his questioning techniques, and 

committed to further developing his IB practices.  

As evidenced in their teaching videos, the experienced teachers made significant strides forward with 

their inquiry questioning skills—pressing students, eliciting student thinking, using a driving question 

to anchor lessons.  

Novice teachers 

How did the five novice teachers fare with IBL?  In the first interview, Guilia, who teaches grade 7 

math and grade 10 science, described her teaching approach: 

Guilia: I’ll present the material first either through PowerPoints or through traditional 

blackboard whiteboard teaching, and then we’ll do practice questions together, and 

then they’ll try some on their own…and then after that we’ll have a review, more 

questions and so forth, and then a quiz, test. 

Guilia spoke openly about her traditional teaching experiences in the first interview. Carole’s 

experience with IB teaching was like Guilia’s. Carole believed:  

Carole: I like giving a little part of a lecture, notes so I would do a little bit of that, but I 

truly believe and after doing a lot of hands-on or practice so I would try to always 

find an activity that goes directly with the lesson. Sometimes my activities—I call 

them activities but, in the end, they ended up being just like handouts, you know it 

was like extra practice, which eventually doesn’t, I find, was not like hands-on 

relevant.  

The novice teachers lacked the confidence to use their university training and were relying on 

traditional modes of lesson delivery—lecturing, pen-and-paper, fill-in-the blank handouts 

interspersed with infrequent low leverage lab situations in science classrooms, and mathematics 

lessons centred on identifying problems of understanding, then fixing, and solving students’ 

misconceptions. Of the eight participant PLC teachers, Aysha had the clearest vision of IBL. 

However, referring to both of her field experiences (FE) she noted the following: 

Aysha: [I] didn’t do much inquiry-based, it was more just lecture and lab. I would say like 

50% lab, 50% lecture, so obviously I think I still haven’t had the chance to do what 

I’ve been wanting to do. 

Aysha, like Guilia and Carole, did not have an opportunity to practice IBL during their FE. After 

talking with the novice teachers, my impressions were that they were drowning. Aysha, Carole and 

Guilia had practiced IBL at university during their method courses. However, as Carole pointed out, 

these practice rehearsal sessions were artificial as they unfolded in front of other university peers, 

which was not an accurate representation of a high school classroom teaching experience. Ideally, the 

novice teachers would have had multiple opportunities to practice IBL during their FE. However, 

their cooperating teachers (or associate teachers, as they are called in Ontario) had not been trained 

to use IBL, and thus, their cooperating teachers were traditional in their classroom practices. The lack 

of time given to experimentation with IBL left the novice teachers with few IB experiences to draw 

upon as they graduated and began their teaching careers.  

Zofia and Steven were teaching math and science courses. In the first interview, Zofia discussed her 

approach to teaching: 

Zofia: A lot of the times like forty lecture and twenty discussions. 

Like Zofia, Steven’s approach to teaching mathematics at the beginning of the year was: 
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Steven: A teacher center [sic] approach. Per class, usually 20 to 30 minutes of giving notes 

and lecturing. 

The remainder of his class time was spent allowing students to complete pen-and-paper practice 

sheets. Neither Zofia nor Steven discussed questioning techniques or engaging mathematics students 

in discourses centred on mathematical concepts. 

At the end of the PLC year, Guilia, Carole, and Zofia were flourishing. Guilia’s second interview 

recorded a significant shift in practice. She described the job of the teacher as setting up learning 

situations in which students had opportunities to discuss their intuitive ideas regarding scientific 

concepts, that her focus now was on the elicitation of these intuitive and developing scientific 

concepts as she questioned students in a dialogic sequence of questions and answers. In her words: 

Guilia: Students understand how or why something is happening. Not just by being told 

from the teacher why it’s happening, to discover it themselves by tackling their own 

ideas and their preconceptions and misconceptions about something and that it’s 

really unravelling that and then putting it back together in a way that truly explains 

how and why something is. Getting the students to tell me what they’re thinking 

and then breaking that down.  

In the second interview with Carole, she spoke of her earlier fears regarding IBL. However, she had 

moved beyond her feelings of trepidation, and was now confidently incorporating IBL into her 

teaching. 

Carole: It was scary the way it was in my head, but through the PLC, it was actually like 

OK this is actually not that bad…I wanted to do it and I had heard about it but I 

never thought I was doing it, and I didn’t want to do it. Now it’s like actually, I can 

do this. I liked it. I saw the students in the time we had have discussions. Sometimes 

I feel like at the beginning I was going to lose them because I don’t know where 

we’re going. I don’t know where it ends up, so scary. But then it’s actually good, 

and it’s was oh OK now I understand this.  

Carole’s initial discomfort with IBL is common. During IBL, the teacher is giving up control of the 

lesson to the students. In the literature, lack of content knowledge is one reason why teachers resist 

IBL (Feger & Arruda, 2008), which was a factor in Carole’s earlier career decision to play it safe. 

The novice teachers, particularly Carole and Guilia, spoke of using student discourse to develop 

understandings of mathematics and scientific concepts. This was particularly evident in their teaching 

videos. Zofia’s reflection about her second mathematics teaching video captured her developing 

understanding of IBL: 

Zofia: I'm not going to say the answer, I wait for them. Whenever somebody says a wrong 

answer, I put it down, and let them figure it out...I acted surprised when I just 

thought, okay, we’re going to put it down for them to see that it doesn’t actually 

work. 

The data suggested that the PLC experience broadened teachers’ conceptualization of IBL as all of 

the participants began to use high-quality instructional practices. There was strong evidence that 

teachers were most aware of and incorporating the elicitation of students’ intuitive ideas by pressing 

and revoicing student thinking. They were making progress with their ability to orienting students to 

each other’s ideas and position students competently. Moreover, they were encouraging dialogue 

among students and supporting them to build their concepts/models. Furthermore, Carole, Liam, 

Nancy, and Vera enacted other aspects of IBL, such as engaging students in investigations, making 

observations, collecting data, constructing data-based explanations, and comparing students’ 

explanations to scientific models. Overall, teachers demonstrated a change in their approach to their 
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professional practice as they reconstructed their professional practice through their enactment of IBL. 

Collectively, the teachers in the PLC were able to shed aspects of their pre-reform practices. 

Last, the findings illuminate how the PLC helped experienced teachers visualize inquiry-based 

pedagogies. Vera referenced the novice teachers’ videos, who, she thought, demonstrated greater 

comfort with this style of teaching, as seen in the following PLC excerpt: 

Vera: By watching the videos [of novice teachers] and I became more conscious. 

Additionally, the novice teachers overcame their insecurities and developed confidence through 

encouragement, validation, and support from their experienced colleagues. In Guilia’s words: 

Guilia: The PLC acted like a motivational point for me to continue doing this because you 

get to go and meet these other teachers who are trying to do the same thing and talk 

about it. So, if you see all these other people doing it, you kind of want to join in as 

well. So, it is motivational.  

Together, the community or practitioners developed an understanding of IB teaching. They were able 

to leverage their different experiences of professional practice to develop and innovate. 

Discussion and conclusions 

This study follows the professional trajectory of five novices and three experienced science and 

mathematics teachers. What was particularly significant was how the categories of experienced and 

novice were frequently blurred, since learning occurred in two directions—from experienced to 

novice, and from novice to experienced. This PD experience initiated a shift in professional practices 

as the eight science and mathematics teachers began transitioning to inquiry-based practitioners.  

The learning during the PD suggests that all learners co-developed inquiry-based practices in the 

professional community. The novice teachers initially spoke at length about their struggles with inquiry-

based lessons. They spoke of fear, worried that incorporating inquiry into their lessons could lead to a 

loss of class control, lack of time to deliver the curriculum when final exams are the end goal or 

following teaching practices contrary to their department norms. However, these narratives began to 

change as the novice teachers, guided by the experienced teachers, aligned their professional practices 

with their pre-service models of instruction. In sum, novice teachers gained confidence as they 

continued their journey to becoming inquiry professionals, benefitting from working with experienced 

teachers during the critical induction years. The experienced colleagues were able to mitigate the novice 

teachers’ insecurities, anxieties, classroom management problems and lesson planning issues. At the 

same time, the novice teachers exemplified inquiry practices because they had university experience 

with these pedagogies. The experienced teachers, who were neophytes to inquiry teaching, developed 

a burgeoning understanding of inquiry-based teaching by watching and discussing the novice teachers’ 

video lessons. In essence, there was a dynamic weaving and intermingling of roles within the learning 

community. There were multiple instances where the novice and experienced teachers supported each 

other to co-develop these pedagogies. As seen from their respective learning trajectories, both the 

novice and experienced teachers developed new ways of teaching.  

The focus of the PD was to help in-service mathematics and science teachers navigate the space 

between traditional teaching practices and inquiry-based pedagogies. The experienced teachers did 

not have opportunities to learn and implement inquiry-based pedagogies because there are few PD 

opportunities where teachers can learn, develop, and practice these pedagogies. High-quality PD 

should facilitate collegial discourse among teachers to support critical reflection and examination of 

professional practices (Hargreaves, 2019; Kruse & Johnson, 2017; Putnam & Borko, 2000). Effective 

teacher learning models emphasize that teachers learn best when they have opportunities “of creating, 

developing, organizing, implementing, and sharing their own ideas for school change rather than 

being passive recipients of knowledge from the outside” (Lieberman et al., 2017, p. 1). However, PD 
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activities that focus on developing teacher practice require a substantial amount of time, planning, 

and financial resources (Deneroff, 2016).  

PLCs can provide a space for teachers to experiment with and develop practices that are immediately 

transferable to the classroom, in part because the longer duration of a PLC is more effective than 

episodic workshops. Thus, the PLC structure provides sufficient time to include applications to 

classroom practices, time for collegial discourse, coaching, modelling, observation of teaching, and 

reflection and feedback from colleagues through teacher learning situations that are flexible, teacher-

centred, and interactive (Vescio et al., 2008; Webster-Wright, 2009).  

This study extends the current literature on PD, suggesting that a PD model that intentionally includes 

novice and experienced teachers can help teachers co-create new ways of teaching, potentially leading 

to pedagogical innovation. This PLC experience initiated a shift in professional practices as teachers 

began transitioning to inquiry-based practitioners. The novice teachers’ practices had lapsed to 

traditional teaching, informed less by their university coursework and more by the apprenticeship of 

observation (Lortie, 2002)—their professional vision informed by years spent learning in classrooms. 

In this study, the novice teachers had an opportunity to share their struggles with IBL enactment, their 

worries that they might lose class control, their experience a reduction in instructional time, and their 

perceived focus on following institutional norms. These narratives shifted as the experienced 

colleagues mitigated their insecurities, classroom management problems, and lesson planning issues. 

Simultaneously, experienced teachers developed an understanding of IB teaching by watching and 

discussing the novice teachers’ video lessons. There was a dynamic weaving and intermingling of 

roles within the learning community.  

The data raises relevant concerns. First, educators need to understand the disconnect between university 

theory and the reality of on-the-job teaching. The novice teachers could not enact the theory of inquiry-

based practices without support. Instead, they had lapsed to traditional teaching, informed by the 

apprenticeship of observation (Lortie, 2002)—the years spent observing their classroom teachers.  

Limitations 

This study examined the professional trajectory of eight teachers of mathematics and science as they 

engaged with and worked to reposition their professional practices in the same geographic area. Thus, 

the findings provide a local or regional snapshot of professional development and learning. It is quite 

probable that had the research been conducted in another region of the province, that the findings 

would have been different, depending on the context, group dynamics, and teachers’ goals for the 

PLC. Furthermore, in Québec, the domain of PD falls under the jurisdiction of each school board, 

and therefore the findings from this study may not apply to other school boards in Québec because 

each board enacts a unique PD vision.  

Additionally, this study did not examine the transference of teachers’ pedagogical gains to student 

learning in the classroom. The focus of this study was to examine how STEM teachers develop in a 

professional learning community. Logically, the final objective is to improve student learning and 

engagement with mathematics and science. Future studies need to examine the impact that reformed 

teacher praxis has on student achievement. Although educational scholarship has written much about 

PLCs and their potential to develop teachers’ professional practice, more needs to be done. 

Implications 

The focus of this study was to help STEM teachers develop inquiry practices. This study extends the 

current literature on PLCs, suggesting that a PLC model of PD that includes novice and experienced 

teachers is particularly useful since novice and experienced teachers have different experiences with 

professional practices. Including teachers of different experience levels in a PLC generates dynamic 

supportive structures that facilitate teachers’ potential to navigate the space between traditional and 
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reform-based pedagogies. This research can inform researchers, educators, school boards, and 

policymakers how a heterogeneous group of mathematics and science teachers engage, learn, and 

enact useful and effective processes that facilitate professional growth.  
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Scaling up Kanga-Kids training program for math teachers as part of 

a city STEM ecosystem: First trial 

Judith Zamir1, Heftsi Zohar2 and Mark Applebaum1 

 

This paper presents the first trial for scaling up the Kanga-Kids Training for Math Teachers in early 

grades as part of a municipal STEM Ecosystem. Following a brief overview of the Kanga-Kids 

Training Program for Math Teachers and its evaluation findings during its first and second years, 

we present an analysis of the scaling up process in five primary schools. The results and conclusions 

are presented through a case study methodology that showcases what works best and what needs to 

be improved in the scaling up process. The paper draws two main conclusions: first, theory and 

practice occasion iterative cycles of enactment, and second, the success of the program will be 

achieved if it becomes mainstream through policy support. 

Keywords: Scaling up, STEM ecosystem, training program. 

 

Introduction 

Kanga-Kids is part of the first STEM ecosystem springboard and is based on professional 

development workshops for early childhood educators who then facilitate the program in their classes 

and are expected to share their knowledge and experience with their colleagues in schools. 

All data presented here is based on the second-year program evaluation report requested by Be’er 

Sheva Municipality STEM Ecosystem which initiated and supported the project. 

The STEM Ecosystem is a network linking stakeholders in and around the city in a collective effort to 

advance STEM education and the development of 21st-century skills. Today’s children will need a 

different set of skills than those needed in the past to enable them to thrive in the changing world of work 

possibilities. These 21st-century skills include, among others, science and technology literacy as well as 

work habits and qualities such as collaboration and teamwork, creativity and initiative, adaptability. 

Literature review 

STEM offers an interdisciplinary approach to learning where content is coupled with real-world 

lessons as students apply science, technology, engineering, and mathematics in a context that makes 

connections between various aspects of their lives (Lantz, 2009). The quality of children’s learning 

environments influences later academic success (Campbell et al., 2001; Hadzigeorgiou, 2002). Thus, 

appropriate STEM experiences in early childhood can be starting points for supporting children’s 

continued success in STEM at elementary, secondary, and postsecondary levels. Furthermore, the 

National Science Teachers Association (2014) suggests that early childhood education may offer 
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opportunities for teachers to engage in science and engineering activities that capitalize on students’ 

interests, experiences, and prior knowledge in natural extensions of purposeful play. 

Various goals of STEM education for student development have been proposed, including students’ 

knowledge of the fundamental concepts relevant to STEM, their understanding of the characteristic 

features of STEM disciplines, their acquisition of skills addressing STEM-related questions and 

problems, capabilities relevant to the 21st century (such as creativity, critical thinking, 

communication, and collaboration), and positive attitudes (such as interest, engagement, and self-

efficacy) toward STEM (Bybee, 2013; National Research Council, 2014). Until now, a great deal of 

research has been conducted on the positive impacts of STEM education at school levels, such as the 

effect on academic achievements of high school students and their career choices (Han, 2017; Han et 

al., 2015), and elementary and middle school students’ dispositions toward STEM (Afriana et al., 

2016; Christensen et al., 2015; Guzey et al., 2016). 

The necessity of early exposure to STEM was highlighted by several scholars (Bagiati et al., 2010; 

Bybee & Fuchs, 2006). It was argued that young children are congenitally curious, creative, and 

collaborative, which are the same attributes needed for STEM education, and these attributes in young 

children make them naturally interested in STEM-related concepts (Banko et al., 2013; Reis & Renzulli, 

2009). Furthermore, children have innate intellectual tendencies that enable them to learn STEM, such 

as the ability to make sense of experience, analyze, hypothesize, and predict (Katz, 2010).  

Early childhood science instruction should build on children’s curiosity and ability to make sense of 

experience. It should include an inquiry approach and provide appropriate platforms that promote 

conceptual understanding and reasoning (Leuchter et al., 2014; Roth et al., 2013). Eshach and Fried 

(2005) argue that science is an important—and perhaps imperative—component of early childhood 

education because it builds upon students’ innate interests in the natural world, can help develop 

positive attitudes towards the discipline, and can provide a foundation upon which further learning 

and understanding can be built.  

However, research suggests that current professional development systems are largely ineffective and 

make little or no impact on teacher behavior or child outcomes (Farkas et al., 2003; Joyce & Showers, 

2002; Snyder et al., 2011). While traditional methods of professional development such as training 

sessions, workshops, and conferences have been found to increase teachers’ awareness, these forms of 

professional development are not associated with teachers’ sustained use of research-based 

interventions (Artman-Meeker & Hemmeter, 2013; Odom, 2009). Alternative research-based 

professional development is critical. Assessments demonstrated that the provision of high-quality 

professional development has shown significant improvement in young children’s achievement 

(Brendefur et al., 2013; Kermani & Aldemir, 2015). Professional development should be ongoing and 

appropriate to the subject matter being taught; it should include opportunities for teachers to actively 

participate and have some relevance to what is happening in the classroom (Garet et al., 2001). 

However, many early childhood teachers are neither eager nor prepared to engage children in rich 

experiences in domains other than language literacy (Duschl et al., 2007, Clements & Sarama, 2014; 

Brenneman et al., 2009). In fact, widespread anxiety about topics such as mathematics exists among teachers 

of young children and correlates with their students’ achievements (Beilock et al., 2010). Furthermore, many 

teachers do not know how to adapt STEM instruction to suit the needs of their students. 
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Many teachers continue to hold negative feelings about math and science even after graduation. In 

mathematics, for example, these feelings lead to undervaluing the teaching of math, avoiding or 

minimizing math instruction, and ineffective ways of teaching the subject (Huinker & Madison, 1997; 

Lee & Ginsburg, 2007). Similar trends appear in science education. Consequently, we need to 

effectively increase teachers’ STEM knowledge and change negative dispositions and beliefs through 

high-quality pre- and in - service professional development.  

Be'er Sheva’s STEM ecosystem 

In 2017, several philanthropic funds led by the Jewish Funders Network (JFN) collaborated to design 

and establish a STEM ecosystem in Be'er Sheva from preschools until the student reaches the 

employment market. 

The design process of the Ecosystem began in 2018 and was headed by the local authority in 

cooperation with TIES (Teaching Institute for Excellence in STEM)— an organization that develops 

and implements the model in the USA and other countries worldwide. 

The leadership team is headed by the deputy mayor of Be'er Sheva, who holds the Education Portfolio 

in the Municipality. The vision of the municipal ecosystem is to create a platform of partnerships that 

will contribute to the optimal actualization of the vision of turning Be’er Sheva into a top-tier STEM 

metropolis that will produce a continuum of opportunities and outcomes from preschool age to 

successful future career paths. The purpose of the municipal ecosystem is to promote the human 

capital potential of residents of Be’er Sheva and its metropolis from early childhood through high 

school in STEM-related fields.  

The Kanga Kids program 

The Kanga-Kids is a program based on professional development workshops for early childhood 

educators who then facilitate the program in their classes and are expected to  spread their knowledge 

and experience through their colleagues in schools. 

Materials in the Kanga-Kids program do not overlap with the schools’ curricula, are oriented to the 

development of children’s logical thinking, spatial abilities, and high-order thinking skills, and are 

based on puzzles that are connected to their everyday lives.  

Two examples of the tasks used in the program are presented below: 

Four identical pieces of paper are placed as shown. Michael wants to punch a hole that goes 

through all four pieces. At which point should Michael punch the hole?                

 

 

 

 

Figure 1: Four pieces 

A student made the shape shown using 12 cubes. He put one drop of glue between any two cubes 

that share a common face. 

How many drops of glue did he use? 
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Figure 2: 12 cubes 

The main goal of the program is to expand STEM learning among children, provide professional development 

for educators, and create communities of practice to share experiences and promote best practices. 

Providing quality opportunities to explore STEM content outside of formal school settings removes 

the academic pressure and fear of failure that can contribute to STEM disengagement, even among 

bright and motivated students (Potvin & Hasni, 2014). It also supports positive youth development 

— including fostering quality relationships with peers and adults and acquiring other social skills — 

by offering a safe place for children to learn and play when their primary caregivers are at work or 

otherwise unavailable (Noam & Triggs, 2019).  

Research literature shows growing evidence that participation in high-quality, STEM-focused 

programs can positively change youth attitudes related to STEM engagement, identity, career interest, 

and knowledge of careers (Allen et al., 2019; Chittum et al., 2017; Young et al., 2016).  

During its first year, Kanga-Kids operated an ongoing collaborative training, through which it 

succeeded in changing participants’ attitudes toward math and teaching it. Moreover, it succeeded in 

changing participants’ teaching routines after the in-service training (for more details, see Appelbaum 

& Zamir, 2022). Analyzing and conceptualizing those findings led to the conclusion that training 

through modelling methods and fostering creativity are basic to reaching professional development. 

When talking about creativity, we mean fostering a process of exploration, play, risk-taking, mistake-

making, self-evaluation, and feedback (Appelbaum & Zamir, 2022; Runco, 2014; Sternberg & 

Williams, 1996). All these principles were implemented in the Kanga-Kids in-service teachers 

training course. It was shown that “intentional actions…to create STEM learning environments, build 

STEM capabilities and nurture STEM dispositions” (Murphy et al., 2018, p. 4).  

This paper focuses on the second year of work, in which the evaluation of the program investigated 

the scaling up activity and its impact: the scaling up was the first trial to disseminate the program 

(McLaughlin & Mitra, 2001). The basic assumption was that the knowledge and skills acquired by 

the first group during the training program could enable them to disseminate the program and its 

impact by starting a scale up phase.  

Fifteen teachers chose to attend the Kanga-Kids in-service teachers training course. All participants 

were certified teachers, of whom eleven with Bachelor’s degrees and four with Master’s degrees; all 

were aged between 35 and 50 and were recommended by their principals who highly appreciated 

them as future leaders in their expertise. They all taught at elementary schools (1st to 6th grades). It is 

important to stress that each of their classrooms comprised 32-35 students in extremely heterogeneous 

socio-economic groups.  

Eight four-hour workshops over the course of one semester were aimed at delivering modules that focused 

on mathematics concepts and different strategies of problem-solving (Appelbaum & Zamir, 2022).  
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Five outstanding teachers were chosen to introduce STEM skills to the staff in their schools in a way 

similar to that in which they acquired the same skills during their own professional development. They 

were enthusiastic during the training process and presented high-level outcomes of their work. Adam, 

the first-year coach, met them during the year both one-on-one and in a collaborative-learning group.  

The scaling up phase became an interesting study matter. Therefore, we have chosen to describe this 

in length through a five teachers’ case study implementing thick description (Geertz, 1990). 

Scaling up 

The educational process is a crucial aspect of human development, providing individuals with the 

knowledge and skills necessary to navigate the world around them. Scaling up concepts in the 

educational process involves the needed steps for expanding and improving the quality and reach of 

educational programs (Scriven, 1991) to provide equitable access to education for all. Scaling up is a 

challenging process with numerous barriers that must be overcome. A good example is found in 

Healey and De Stefano (1997) claiming that “after nearly two decades of school reform effort, fewer 

than 5% of the schools in the USA have changed their core educational practices” (p. 2). Taylor et al. 

(2011) claim that the complexity of scaling up has been neglected and that the whole educational 

system suffers from the fact it has not been paid enough attention. Scaling up is seen as a problem 

independent of human resources and budgets. Bodilly (1998) presents her view on the complexity 

inherent to scaling up. She highlights three factors that while identified as most important for the 

success or failure of scaling up educational reform, they are not the focus of evaluation:  

(a) Origin: The origin of the reform design relative to adopters (internally, developed by teachers in 

the school, or externally by a developer).  

(b) Target: A targeted reform toward a specific population or curricular area, or implemented broadly 

across sites.  

(c) Object: Reforms aimed at structural or instructional change.   

In 2022, the European Commission completed a toolkit for scaling up projects (Barnett, 2022). They 

designed seven steps starting from building a shared understanding across government; identifying 

and framing the expected challenges; searching for innovations with potential; assessing the evidence 

for these innovations; guiding the choice of scale-up pathway; promoting continuous learning; and 

working toward mainstreaming. Like Bodily (1998), the writers stress the fact that projects cannot 

reach the scaling up stage if they do not become part of the mainstream recognized by the 

Government. Therefore, policymakers are still looking for an effective way for replicating models 

that work. They have found that when acting in networks among schools, the possibility of replicating 

good models increases as found by Farrell et al. (2012) that presented the example of charter schools 

embracing 25 schools engaged in a scaling up project. In this paper, we follow the example of Cooley 

(2016), a member of a team from MSI (Management Systems International). 

Our scaling up trial follows their guide stating three main steps: 

Step 1: Develop a scaling up plan,  

Step 2: Establish the pre-conditions for scaling up,  

Step 3: Implement the scaling up process.  
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The scaling up program description 

Steps 1 and 2: the scaling up program relied on the assumption that experienced teachers, who 

personally experienced the Kanga-Kids training program would be prepared to disseminate the 

program. In their conclusions,  Appelbaum and  Zamir (2022) note that, Kanga-Kids adopted and 

implemented Brenneman’s ten best practices of professional development to support the program: 

(1) included educators and administrators in the ongoing design; (2) included professional supports; 

(3) boosted teachers’ content knowledge; (4) took into consideration teachers’ attitudes and beliefs; 

(5) engaged with teachers on different levels (large and small groups, one-to-one); (6) connected the 

material with relevant classroom practice; (7) involved educators in feedback and reflective coaching 

cycles; (8) established a collaborative learning community; (9) ensured that the program is ongoing 

and long term; (10) ensured that the material was individualized to suit the needs of the particular 

classroom (Brenneman et al., 2019). Like Bodilly (1998) and Farrell et al. (2012), Adam saw the 

ecosystem in parallel to a city network that would increase the possibility of replicating good models.  

Step 3: during the scaling-up phase, the Kanga-Kids professional development model accomplished 

Brenneman’s ten best practices through two main components: (1) workshops providing space for 

the new leaders to share and solve mutual professional problems and receive feedback (2) reflection 

circles providing individualized coaching, feedback, and support. 

Research questions  

1. What was the vision behind the scaling up program design? 

2. To what extent did the program graduates succeed in attaining collaboration in their schools?  

3. To what extent did the program graduates feel competent for their undertaking? 

4. How, and to what extent, has the program succeeded in changing teachers’ attitudes and routines 

in the math classroom? 

Methodology 

The scaling up phase is presented through the evidence brought by five teachers’ case study. The case 

study was built within the qualitative paradigm to enable the participants to enunciate their own 

opinions and interpretations of the process. The case study is a methodology near the anthropologist 

or the clinician’s work, and it can cover causation where statistics cannot give a deep explanation 

(Scriven, 1991).  It is based on interviews with the graduates and the coach. All the interviews were 

video recorded with the participants’ consent after verifying their comprehension of the research 

goals. The data was first analyzed based on grounded theory (Glaser & Strauss, 2008). The findings 

were then compared to other theoretical models such as Learning from Success (Rosenfeld et al., 

2006) and, of course, Scaling up Phases in Change as in Cooley (2016), Bodilly (1998), and 

McLaughlin and Mitra (2001) 

Findings 

We present here a case study about five teachers’ stories through which we analyze the first scale up 

trial results. Each teacher’s story is part of the whole case study puzzle enabling the researchers to 

reach new insights. 
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Five teachers with degrees in mathematics who had participated in the Kanga-Kids training program 

were asked to participate in the second phase and were directed to disseminate their knowledge to the 

other math teachers in their schools. Adam, the coach stated:  

After the training phase, I was very impressed by some of the participants’ collaboration, 

participation, and initiatives. They also presented very interesting and complex outcomes from 

their work with their pupils in the classroom. There were seven teachers out of the fifteen; I 

wondered whether they would be ready for the next step. I talked with each of them personally. 

Two later left the area to work in new locations. I focused on the other five. 

Adam’s goal was to bring the idea of developing STEM skills in the first grades of five elementary 

schools by teaching mathematics via puzzles. His vision was to subsequently implement the STEM 

program throughout the whole municipal ecosystem. The five schools were seen as a pilot within the 

city ecosystem. 

Similar to Cooley (2016), Adam suggested testing scaling up considerations as early as possible in 

the innovation process.  

By the end of the academic year, it was clear to Adam and the participants that only two of the five 

had succeeded in promoting the process in their schools. The findings will be presented as one case 

study of two groups: 

The two teachers who had successfully integrated the change in their schools.  

Three other teachers who had not succeeded in leading their teams to a change but continued teaching 

toward STEM skills development using Kanga-Kids’ materials and other puzzles in the mathematics 

classroom, 

Mary’s story 

Mary: Adam phoned me at the end of August, close to the beginning of the new school 

year...he opened a [WhatsApp] group and wrote personally to each of us, 

welcoming us to the group: ‘I have chosen you [to participate] in the scaling up 

process for developing thinking skills in math.” During the interview, Mary said 

that Adam held one-on-one meetings with each of them explaining the project and 

recruiting them for the task. Mary introduced herself as the head of mathematics 

and coordinator of the math team in her school. She has been coordinating and 

supervising the team for a long time and was very proud that Adam chose her to be 

part of the second phase and to help train the second teachers’ group (together with 

a co-trainer).  

Mary related that she had specialized in math for her bachelor’s degree. As math coordinator and 

supervisor, she meets the school math team regularly: she meets the whole team once every two 

months (13 teachers from first to sixth grades). Each week she meets different groups of teachers 

according to students’ ages or levels of study, thus training and supervising the teachers when 

necessary. Mary’s school is a leader in proficiency in math: “We also participated in the final meeting 

with the mayor in attendance…My students prepared emojis.”  

Mary describes her work in the staff room: “One day I came to the staff room with a basket full of 

matches, puzzles, cards, lots of activities options. These are things I always have with me. I sat with 

the math teachers and talked about math. For a while, I was the teacher and they were my students. 
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We played math games with the matches and then they had to create more puzzles. Another time we 

played with dots on cards with beetles on them.” Mary tells about the development of a common 

language, related concepts, the development of strategies, and the enriching discussion that emerged 

from the shared learning. Mary: “I have [also] trained pupils from the sixth grade to lead the first 

grade. They think and explain better than we do.” Mary closes the interview by referring to her team. 

She regards her team as extremely talented and qualified. She is convinced that she could not have 

succeeded without them.  

Irene’s story 

At the start of the interview, Irene related that similar to Mary, Adam phoned her and then they met 

to talk about the scaling up phase of the program.   

Irene: I participated in the training program for in-service math teachers. I loved the 

program. It is very important to develop both mathematical and spatial thinking. 

[Our pupils] don’t try to think by themselves. Adam called me and asked that I lead 

the program in my school team. I introduced the program to the math teachers. One 

of them had also participated in the training program. She collaborated with me and 

[it was good]. I focused on the first grade. For some of the teachers, it was 

completely new.” During the interview, Irene said that she didn’t follow up on every 

single teacher’s classroom work: “I heard that one teacher worked only with the 

best pupils. Others held discussions with the children in a class. Most of them [the 

teachers] introduced the idea of learning math through puzzles to their classes. We 

[the school team] agreed to meet once every three or four weeks. The meetings took 

place through Zoom after school hours. I also met teachers one-on-one at their 

request. It was not easy. 

It is important to stress here that, unlike Mary, Irene is not the school math coordinator. During the 

interview, she was asked about her interaction with her coordinator. Irene: “The coordinator 

supported the idea that I could lead a change process with the first-grade math teachers. The whole 

school participated in the math proficiency competition, and I oversaw the first- and second-grade 

teachers.” Irene said that at the very beginning of the school year, she approached the principal and 

requested her agreement and support for the initiative. She invited Adam to a meeting at the school 

and the principal approved the project. Irene: “I taught the third grade. Each lesson began with 

puzzles. The children really liked it. They were already familiar with this type of material from the 

second grade. There were puzzles in geometry and it connected with the math curriculum very well.” 

Irene said that most teachers preferred to work only with the best pupils. Teachers said that other 

pupils were afraid of failure and chose not to participate. Her approach was different: “All children 

experience success. They succeed in solving problems. Even children who usually don’t participate 

took part. It is a positive experience and I hope it also brings them more success and helps them 

achieve more.” Irene also talked about Adam’s guidance: “I met him three times alone and twice with 

the whole group [of teachers]. He was very supportive and helped me to continue.”  

At the end of the interview, Irene recommended ongoing training for teachers at school. “Perhaps 

Adam can give a lecture to the whole math team at the beginning of the school year.” She understands 

the need to recruit the whole team in each school to reach the best outcomes.  
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What prevented the other teachers from leading the change? 

It is important to stress here that the three teachers who did not lead a change in their schools, 

continued to teach math in their classrooms using Kanga-Kids’ materials and other puzzles, thus 

activating a STEM pedagogy. 

Emily: I participated in the in-service training two years ago. It was very good and I really 

enjoyed it. It was just me and the teaching/learning materials. I do not need to 

supervise other people. I liked the program and I implemented a lot of the ideas. 

My pupils loved the new activities. I worked with the puzzles once a week in the 

classroom environment. Then Adam asked me to join the next phase…I have never 

succeeded in leading other people. I’m good at self-management. That’s the reason 

I have worked as a teacher for more than 30 years and never tried to cope with an 

administrative position or wanted to be in charge.” So why did she agree to lead the 

program at school? Emily: “I agreed because I wanted all children in first-, second-

, and third-grades to enjoy the program and experience developing mathematical 

thinking. Adam really wanted me to do that, and he wanted to meet once a month 

on Zoom. I know some teachers had succeeded but others had not. One of those 

who participated is my coordinator and she is used to leading. I met my colleagues 

[two first-grade math teachers and two-second grade teachers]. I explained how to 

work with the puzzles, how to develop the ideas and the concepts, stimulating 

questions, but I didn’t continue. I worked [only] with my students.” Emily did not 

try to communicate with the math coordinator in the school. She thinks that the 

coordinator would surely have supported the initiative if she had known about it. 

During the interview she related that Adam had suggested coming to the school to 

meet with the principal and the math coordinator—perhaps even a meeting with the 

whole math team—but Emily had said that there was no need for his visit. Now she 

thinks perhaps it was a mistake not to invite Adam to introduce the program at 

school. By the end of the interview, Emily suggested: “Maybe I could invite Adam 

to a meeting with the principal, the coordinator, and the math teachers. He could 

enthuse them with his passion for the program. 

An additional two teachers were asked to conduct the second phase of the program: the scaling up. 

One was interviewed by phone and the other did not want to collaborate with our learning phase. The 

phone interview was very short, and the teacher said she did not know what to do with the idea of 

leading part of her team at school.  

Obviously, the answers to the research questions are present in the participants’ answers.  

1. The basic assumptions about the scaling-up program phase were naïve: Adam believed that the 

basic motivation that brought teachers to the training program, their enthusiasm and collaboration 

during the meetings, and the support given at individual and group levels should lead to dissemination 

of the program, but, as Bodilly (1998) claims, designs, by themselves, cannot transform schools, 

“Schools [can] not simply open an envelope with design specifications inside and transform 

themselves” (p.11). As has been shown, scaling up is an extremely complex process where even the 

ecosystem representatives were needed to make it work.    
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2. The program succeeded in collaboration at two schools. In accordance with Rosenfeld et al. (2006), 

we analyzed what made this possible: the two teachers were proactive and recruited the principal and 

math coordinator and collaborated with the teachers in their schools. They also knew how to attain 

advice and support from Adam and the ecosystem and had participated in additional activities at local 

(municipal) and national levels. They both set up an agenda and made sure that the regular meetings 

with teams were part of a wider range of other activities. 

3. Two graduates of the program felt competent for the task. They were either a priori in a prominent 

position (Mary) or had established the leading position (Irene) by forming collaborations with Adam, 

the principal, the math coordinator, and the teachers and by involving the whole school. 

4. Only in these two schools that had involved the whole school in the program did the program 

graduates succeed in changing teachers’ attitudes and routines.  

Discussion and conclusions 

This paper presents an attempt to scale up an innovative program for STEM studies.  We have shown 

what worked and what did  not. Several questions arise from this trial. As Cooley (2016) puts it, the 

scaling up phase should rely on three steps: 

Step 1: Developing a scaling up plan  

Step 2: Establishing the pre-conditions for scaling up  

Step 3: Implementing the scaling up process  

Step 1: The scaling up plan relied on the idea that professional support at the individual and group 

levels, together with the basic training conducted in Kanga-Kids, could be the basis for its 

dissemination. Adam’s plan was to recruit the teachers and give them support. 

Step 2: The preconditions for participation were success as teachers and having initiative, as stressed 

by Adam in his interview. The preconditions seemed logical and were seen as potentially contributing 

to success, but they also revealed the need for additional preconditions related to leadership skills and 

motivation. 

Step 3: The implementation phase was similar to the Kanga-Kids training at all levels of children’s 

education. Individual and group support and guidance were provided throughout the year. It became 

evident that simply loving the program and being a good teacher was not enough to ensure scaling 

up the change. 

What can be learned from this?  

First, as part of our research, we suggest two additional steps for the scaling-up process. 

The fourth step should include a continuous process of evaluation and assessment, providing ongoing 

feedback to all stakeholders. This feedback could inform necessary adjustments and actions. 

The fifth step should involve expanding upon the circle, similar to the “Adapt Strategy and Maintain 

Momentum” step in the Management Framework for Practitioners (Cooley, 2016). This could involve 

viewing the entire program within the context of the municipal ecosystem and clarifying its role in 

the dialogue between implementation in each school and the overall concept. 
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As Bodilly (1998) noted, many variables are involved in the scaling-up process, including teacher 

selection, school climate, design and team factors, school structure, and leadership skills. Recognition 

and appraisal of the program at the governmental level are also necessary for mainstream change. 

Bodilly (1998) proposes the scaling-up phase as a long-term process that should be evaluated and 

assessed for at least three years until the completion of its implementation in the school, while Cooley 

(2016) suggests that a national scaling-up process takes at least 15 years. Our research indicates that 

one variable that was not adequately considered is the level of preparedness of teams and course 

graduates for the scaling up phase, which should be verified as a precondition for participation. 

Leadership skills are also essential for success and should be tested or taught as a precondition. 

The scaling-up process has just begun, and this research provides the program and its creators with 

an opportunity to learn and draw conclusions. As McLaughlin and Mitra (2001) suggest, deeper 

theoretical exploration and practical trials, as proposed by Cooley (2016), could help address the 

challenges of scaling up. Policy support and working toward mainstreaming are also necessary, as 

noted by Bodilly (1998) and the European Commission (Barnett, 2022). 

To conclude, it should be stressed that this is an ongoing study, and more fieldwork and research are 

needed.  
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Connecting arithmetic and geometry as an artistic expression of 

collateral creativity 

Sergei Abramovich1 and Viktor Freiman2 

 

The goal of this paper is to discuss the notion of collateral creativity in the context of instrumental 

integration of symbolic and visual mathematics as a creative art. Collateral creativity is defined by 

the authors (Abramovich & Freiman, 2022) as an accidental but favorable outcome of problem 

solvers’ hidden ideas of mathematics through technologically supported pedagogic mediation. The 

concept of instrumental act was introduced by Vygotsky (1930) to highlight appropriate uses of tools 

as means of reconstruction of the whole structure of one’s behavior in the process of problem solving. 

Notably, the idea of mathematics as a creative art was discussed by Halmos (1968) who, in particular, 

saw both mathematics and painting as having origins in “physical reality.” 

Keywords: Arithmetic, geometry, collateral creativity, artistic expressions, mathematics.  

 

Introduction 

Halmos states: “The origin of painting is physical reality, and so is the origin of mathematics...[which] 

is a creative art because mathematicians create beautiful new concepts” (p. 388). Consider an example 

of collateral creativity by a second grader who was given eight square tiles and asked by a teacher to 

construct a rectangle using all the tiles (Abramovich, 2019, p. 90). Whereas the traditional expectation 

of the teacher included two rectangles as eight can be decomposed in two factors only (without regard 

to their order), the student constructed a square with a hole in the middle shown in Figure 1. Three 

educational aspects of this classroom episode can be identified. First, the construction was collateral 

to the number of tiles—while two rectangles can be constructed out of ten tiles as well, a rectangle 

with an internal hole may not be constructed using ten tiles. That is, due to the number of tiles given, 

the construction was accidental, yet this educative outcome was favorable as the student was praised 

by the teacher rather than being told (thus denying any creativity) that rectangles do not have holes. 

Second, the instrumental nature of this construction is in the use of manipulatives, which allowed the 

student to reconstruct the traditional structure of behavior when using a marker to draw rectangles on 

the white board. Third, the construction of the rectangle with a hole had origin in the concrete physical 

situation and its perceived aesthetic pleasure allowing the student to experiment with tiles by 

introducing an artistic expression and design thinking (Avsec, 2021) into a physical experiment. A 

competent teacher can recognize numeric properties of geometric characteristics of this rectangle the 

area of which, numerically, is half of the perimeter (including the hole). For instance, the value of the 

area is half of the value of perimeter (external part = 12 + inner perimeter = 4). In other words, visual 

and symbolic mathematics go hand-in-hand connecting geometry and number theory. 

 
1State University of New York, Potsdam NY, United States 

Sergei Abramovich: abramovs@potsdam.edu 

2Université de Moncton, Moncton, New Brunswick, Canada 

Viktor Freiman: viktor.freiman@umoncton.ca 

mailto:abramovs@potsdam.edu
mailto:viktor.freiman@umoncton.ca


 203 

 
Figure 1: A rectangle with a hole 

Examples we will discuss in this paper aim to lead to appreciation of collateral creativity as students’ 

artistic expression of mathematical beauty. For instance, when exploring coloring a map with Grade 

2 students, one of the authors was struck by the following example of a map that requires four colors 

provided by one of his students (Figure 2).  

 
Figure 2: Four regions—four colors 

This example does not only surface another masterpiece of students’ creativity but also highlights the 

importance of fostering it from early grades. Another example from the same classroom echoes 

Kolmogorov’s well-known insight, which we will discuss later in the paper to deal with a property 

of decomposing a square into a sum of odd number; this time one of the students was exploring 

creating patterns with unit cubes. They finally found the following construction exclaiming that 

adding 3 squares to 1; 5 squares to 4; 7 squares to 9, etc. always produces a square (Figure 3). 

 

Figure 3: Constructing squares by a second grader 
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One more example of an activity with the same material (unit cubes) comes from Grade 1 students 

who were asked to build squares on the sides of different types of triangles (obtuse-angle, acute-

angle, right-angle) drawn on a piece of paper. One of these triangles had sides 3, 4, 5. After 

completing the squares, one student remarked that the sum of the number of cubes built on two of the 

sides is equal the number of cubes built on the third side, an observation that led the child to discussing 

what was special in this triangle intuitively grasping a sense of the relationship between the sides of 

a right triangle. 

In the next sections we provide additional examples to demonstrate how collateral creativity could be 

an outcome of students’ artistic expression while showing how teachers could support a deeper 

mathematical investigation upon it. 

Connecting visual and symbolic 

One of the problems in the theory of numbers deals with representing numbers as sums of other 

numbers. Such sums are referred to as additive decompositions of integers. For example, there are 

several additive decompositions of the number 25 each of which can be associated with the history 

of mathematics. These include the decomposition of 25 in five consecutive odd numbers (25 = 1+ 3 

+ 5 + 7 + 9), something that at the pre-school age was noticed by A. N. Kolmogorov, one of the major 

contributors to mathematics of the 20th century. Kolmogorov considered patterns of that kind as his 

first mathematical discovery (Tikhomirov, 2001). Another decomposition of 25 is in two consecutive 

squared integers (25 = 9 + 16)—a special case of the Pythagorean theorem, from where the most 

famous Pythagorean triple, (3, 4, 5), follows. As an aside, note that just like the rectangle with a hole 

(Figure 1), the Pythagorean triangle with the side lengths 3, 4, and 5 also has area that is numerically 

half of its perimeter. That is, this relation could be recognized by a student in a collaterally creative 

fashion had the teacher shared with the students a similar relation regarding the rectangle with a hole. 

Historically noticeable is decomposition of 25 in two consecutive triangular numbers (25 = 10 + 15), 

an observation used in the 18th century by a Dutch minister of church and mathematics teacher Élie 

de Joncourt to compute squares and square roots (Roegel, 2013). Number theorists would mention 

decomposition of 25 in three prime numbers (25 = 3 + 5 +17), a special case that was only recently 

proved in the Ternary Goldbach Conjecture (Helfgott, 2014) which, as mentioned in Vavilov (2021), 

was first formulated by Descartes. Finally, 25 is a perfect square, the name borrowed from plane 

geometry as the sum 1 + 3 + 5 + 7 + 9 can be rearranged into another sum of five integers, yet all 

equal (pointing at the shape of square), 25 = 5+ 5 + 5 + 5 + 5 = 5 × 5 = 52, so that the equality 1 + 

3 + 5 + 7 + 9 = 5+ 5 + 5 + 5 + 5 can be interpreted as a split of square into five gnomons. 

As a way of connecting arithmetic and geometry a task of partitioning a shape (the whole) into several 

parts (the fractions) can also be formulated (although historically, geometric images appeared before 

their symbolic descriptions were developed). Over the centuries, the development of mathematical 

knowledge evolved by considering the primordial nature of concrete objects including geometric 

shapes over the secondary nature of words and other signs that describe specific combinations and 

properties of those objects. Following Vygotsky (1978), one can say that mathematical knowledge 

had been developed through the transition from dealing with the “first-order symbols...directly 

denoting objects or actions...[to] the second order symbolism, which involves the creation of written 

signs for the spoken symbols of words” (p. 115). Through such partitioning, different shapes can be 

created and using visualization as support for rigor and motivation for conceptualization, a great deal 
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of mathematical ideas can be discussed. Johann Heirich Pestalozzi (1746–1827)—a Swiss 

educational reformer—argued that visual understanding is the foundation of conceptual thinking and 

he encouraged “the children to draw angles, rectangles, lines and arches, which he said constituted 

the alphabet of the shape of objects, just as letters are the elements of the words” (Arnheim, 1969, p. 

299). In the age of computers, this pedagogical idea of the early 19th century can be enhanced by 

using a dynamic geometry application when computational experiments, based on the ability of a 

digital tool to interactively measure different characteristics of geometric shapes, motivate 

conjecturing and serve as a window to formal justification of technology-motivated conjectures.  

Number theory, with its origin in symbolic description of images found in real life, includes problems 

dealing with additive decomposition of integers. Over the centuries, the development of mathematical 

knowledge evolved by describing the properties of geometric shapes in a symbolic form. For 

example, the number 25 can be decomposed in the first five odd numbers (alternatively, the 

corresponding square can be split in five gnomons (L-shape)), in two consecutive triangular numbers 

(making a square from two isosceles triangles), and in the sum of two squares of side lengths 3 and 

4. In the classroom, all those connections between symbols and images can be instrumentally 

presented by using manipulatives as well as digital tools. In the authors’ experience, such artistic 

presentations of mathematical ideas motivate students to ask collaterally creative questions. In the 

specific context of decomposition of numbers and corresponding images, the importance of the center 

of a square emerges and the task of partitioning square into equal parts sharing the center can be 

formulated and explored. In this paper, we will provide an example of a simple algorithm of 

partitioning a square into any number of equal parts sharing the center thus leading to various 

aesthetic representations. 

Center as symbolic and visual characteristics of a mathematical structure 

In all five additive decompositions of the number 25, one can single out the number 5 as the center 

of the decompositions. This can be demonstrated through the diagrams of Figures 4–7. In Figure 4, 

the triangular shape formed by the sum of the first five odd numbers is transformed into the sum 5 + 

5 + 5 + 5 + 5 with the number 5 being at the center of the sum (1).  

 
Figure 4: The sum of the first five odd numbers as a square 

In Figure 5, the two squares represented by 16 and 9 counters are also rearranged into sum (1). 
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Figure 5: The sum of two squares as a square 

 

Figure 6: The sum of two consecutive triangular numbers as a square 

In Figure 6, the sum of two triangular numbers represented through right triangles is also rearranged 

into sum (1). One may note that the original arrangement of counters in Figure 5 resembles that of 

Figure 6, yet the transformation was done differently. At the same time, the transformation carried 

out in Figure 4 shows how the sum 1 + 2 + 3 + 4 can be found as 
4(4+1)

2
  and generalized to the form 

1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
 . In particular, this shows how the diversity of visual representations 

provided by concrete materials affects mathematical symbolism of algebra. 

Finally, in Figure 7, the sum 3 + 5 + 17 of three prime numbers is also transformed into sum (1), 

which is a special case that, as noted, was only recently proved in the Ternary Goldbach Conjecture 

(Helfgott, 2014). 

This motivates considering the center of a shape as an important element of the shape. Many 

mathematical problems in school geometry deal with the construction of their centers, however the 

meaning of the word center is understood. In regular shapes, like equilateral triangle, square, regular 

pentagon, and so on, the center belongs to the intersection of different elements of the shapes, and it 

can be used to subscribe or circumscribe a circle around the shape. In what follows, the square will 

be considered as well as its decomposition in a given number of parts of equal area. 

 
Figure 7: The sum of three prime numbers as a square 
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Remark 1. Of course, not every square constructed out of counters has a visually identifiable square. 

But as always in mathematics, visualization opens a window to abstraction. For example, in 4 × 4 

square (or in the sum 1 + 3 + 5 + 7) there is no counter as the center of symmetry (no number in the 

middle). In that case, the center has to be defined proceeding from numeric concreteness and visual 

affordance provided by the odd number of side lengths or addends. Visually, the definition may 

include the midpoint of a diagonal of a square (used below in the related geometric constructions); 

numerically, the arithmetic-mean of two midterms of a sum. 

Dividing a square into five equal parts sharing the same center 

The emergence of the center of a polygon as an important entity of geometric constructions, provides 

many opportunities for dynamic investigation and eventual emergence of collateral creativity by 

appealing to a visual aspect of hidden relationships (Figure 8). 

 

 

Figure 8: Visual appeal of the center of a geometric figure 

Indeed, Gerson et al. (2018) mentioned a possibility for a student to find surprising solutions or a new 

way of looking at a problem; engage in an active process of creating mathematical ideas; conduct an 

inquiry using technological tools; discuss, and question. 

In demonstrating visual images of fractions by connecting arithmetic to geometry, learners of 

mathematics might be very creative without actually recognizing their creativity. For example, as 

discussed in Abramovich and Brouwer (2007), an elementary teacher candidate drew a sketch similar 

to the one shown in Figure 9. The teacher candidate claimed that regions between two consecutive 

squares are equal to the area of the smallest square. This, in turn, divides the largest (dotted lines) 

square into five equal parts (four frames and the smallest square), which makes the surface of four 

‘frames’ (space between two consecutive nested squares that share the same center) and the surface 

of the small square in the middle the same thus creating five equal parts of the large square (the one 
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marked by dotted lines). The teacher candidate did not provide a justification for the claim or built 

on this creative idea. In this example, the teacher candidate demonstrated collateral creativity as an 

accidental outcome of working on five squares that share a center point. It was the instructor who 

identified this as a manifestation of collateral creativity and followed up by posing the problem with 

the whole class. This is elaborated below. A variety of activities appropriate for elementary, 

secondary, and tertiary levels of mathematics education stemming from the collaterally creative 

example of one-fifth shown in Figure 9 can be found in Abramovich and Brouwer (2007). 

 

Figure 9: Collateral creativity of dividing square into five equal parts 

Collateral creativity as problem posing in the zone of proximal development 

An important distinction between creativity and collateral creativity is that the former does not require 

a teacher in the process of problem solving. The latter, however, does require a competent teacher 

capable of making the transition from knowing mathematics to using this knowledge in recognizing 

that a student, in fact, has posed a problem, and then share this recognition with other students. 

Collateral creativity of a student as was shown in the two examples above—the creation of rectangle 

with a hole and the construction of equal area parts of a square in the form of frames—without the 

presence of a “more knowledgeable other” (Vygotsky, 1978) may go unnoticed or just be rejected by 

the instructor. However, both examples open a window to new mathematical ideas and may be 

recognized as unintended problem posing by a student. 

In general, the activity of problem posing has been a useful method of encouraging the advancement 

of mathematics and mathematical education for a long time. Problem posing goes back to the 15th 

century Italy when the first printed book on arithmetic written by an unknown author included 

problems aimed at explaining how to solve problems appearing in the context of trade. In the 17th 

century, many non-mathematicians interested in gambling posed mathematical problems aiming to 

become more informed gamblers. In the keynote address to the 1900 International Congress of 

Mathematicians, Hilbert (1902) formulated 23 problems from different branches of mathematics, 

thereby charting the program of mathematical research for the 20th century. Finally, a few years ago, 

a book on the use of problem solving in mathematics education was published (Singer et al., 2015). 

The kind of unwitting problem posing manifested by a second grader (rectangle with a hole) and by 

an elementary teacher candidate (portioning rectangle into frames of equal areas) may be considered 

as problem posing stemming from doing mathematics in the zone of proximal development 

(Vygotsky, 1987). This zone can be described as a dynamic characteristic of cognition that, in a 

problem-solving situation, measures the distance between two levels of one’s development as 

determined by independent and assisted performances. The construction of a rectangle with a hole by 

a second grader was done independently.  



 209 

The child was collaterally creative due to the use of square tiles and in order to recognize his 

performance as posing a problem—finding the relationship between area and perimeter of rectangle 

with a hole—requires competent assistance of a teacher. This competence includes a teacher’s ability 

of recognizing the significance of the student’s independent performance, sharing this recognition 

with the student (who, otherwise, would remain in the zone of proximal development) and inviting 

the entire class to explore the problem posed as a result of collateral creativity by one of their peers. 

As was mentioned above, the construction of a fractional part of a square was not followed  by a 

justification on the part of the teacher candidate, and it was the candidate’s professor who recognized 

in the construction a new problem-solving milieu well beyond the elementary level. For example, the 

following problem was posed: How can one partition a square of side√𝑛 into n regions of unit area 

sharing a center? 

Dividing a square into five equal parts sharing the same center 

A problem of dividing a 5×5 square into five equal parts sharing the center of the square (constructed 

as the midpoint of a diagonal) can be solved in several ways. First, using paper and pencil one can 

find out that it is not possible to have five triangles of equal area sharing the center. Therefore, at least 

one of the parts has to be a quadrilateral. This raises a new question: Can we have one quadrilateral 

and four triangles, all of the same area? Such explorations would result in the conclusion that we need 

three quadrilaterals and two triangles. A possible partition is shown in Figure 5 where two adjacent 

sides of the square are divided in the ratio of 1 to 4 and another two sides in the ratio 2 to 3. This 

understanding of how partitioning the sides of the square in two segments can be done can be 

developed experimentally through trial and error by using dragging and measuring features of 

dynamic geometry software. Then, the center of the square (the midpoint of a diagonal) has to be 

connected with one vertex and with the corresponding points of division of the sides through which 

three triangles and two quadrilaterals have been created. The functionality of the Geometer’s 

Sketchpad allows for an experiment, and computational demonstration, using trial and error, help 

show that the five parts do indeed have equal areas (Figure 8). This, however, does not mean that the 

tool “abolishes and makes unnecessary a number of natural processes” (Vygotsky, 1930), such as the 

process of formal mathematical proof. Rather, the tool sets the stage for a discussion of why the parts 

have equal areas and thus it coordinates the course of mathematical behavior by a student. In other 

words, proceeding from the computational demonstration, a student can be led to some formal 

geometric investigations structured by a set of questions requesting explanation. This first question 

(also seen as posing a problem formulated within the zone of proximal development of at least some 

learners of mathematics) is: Why do the five parts have equal areas? 

 

Figure 10: Dividing a 5×5 square into five equal parts 
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To answer this question, note that we have two equal area triangles (having equal in length a base 

and the corresponding height, respectively) and three quadrilaterals (Figure 10). Using the basic 

formula, the area of a triangle is equal to the product  
1

2
∙
5

2
∙ 4 = 5 (square units). In order to find the 

area of a quadrilateral KHLG two equal sides and the diagonals of which form the right angle, the 

lengths of the latter pair have to be calculated. This would allow one to find the area as half the 

product of the diagonals (which form the right angle because the medians of isosceles triangles KHL 

and KGL meet at the same point thus forming the diagonal 𝐻𝐺 ⊥ 𝐾𝐿). We have HG = 
5√2

2
 and KL = 

2√2 . Therefore, the area of the quadrilateral KHLG is equal to the product  
1

2
∙
5√2

2
∙ 2√2 = 5 (square 

units). This makes it possible not to calculate areas of equal area quadrilaterals IFLH and JEKH and 

to subtract 15 from 25 to have 10 square units for both quadrilaterals. This proves that all five parts 

into which the square EDFG was divided have the same area, 5 square units. 

These calculations can be generalized to the case of square of side length a. The area of a triangle is 

the product 
1

2
∙
𝑎

2
∙
4𝑎

5
=
𝑎2

5
 . The diagonals of the quadrilateral with a pair of equal sides and diagonals 

forming the right angle are 
𝑎√2

2
 and 

2𝑎√2

5
 . Thus, the area of each quadrilateral is equal to the product 

1

2
∙
𝑎√2

2
∙
2𝑎√2

5
=
𝑎2

5
 .  This proves that all five parts into which the square of side length a was divided 

have the same area, 
𝑎2

5
 square units. 

Dividing a square into seven equal parts sharing the same center 

In order to partition a square into seven equal parts that share the center of the square, one has to 

construct a square of side length a and divide its sides starting from the top-left corner and going 

clockwise as follows: 

(
2𝑎

7
+
4𝑎

7
+
𝑎

7
) + (

3𝑎

7
+
4𝑎

7
) + (

4𝑎

7
+
3𝑎

7
) + (

𝑎

7
+
4𝑎

7
+
2𝑎

7
) . 

By connecting the center of the square with the points into which its sides have been partitioned, we 

see four triangles of base 
4𝑎

7
 and height 

𝑎

2
  as well as three quadrilaterals one of which has mutually 

perpendicular diagonals of lengths 
𝑎√2

2
 and  

2𝑎√2

7
 . Therefore, the sum of the areas of those four 

triangles and the quadrilateral is equal to 

4 ∙
1

2
∙
4𝑎

7
∙
𝑎

2
+
1

2
∙
2𝑎√2

7
∙
𝑎√2

2
= 4

𝑎2

7
+
𝑎2

7
=
5𝑎2

7
 . 

The joint area of the remaining two equal area quadrilaterals is equal to  𝑎2 −
5𝑎2

7
=
2𝑎2

7
 



 211 

 

Figure 11: Dividing a square into seven equal parts 

Dividing a square into nine equal parts sharing the same center 

In order to solve this problem, consider first an 𝑎 × 𝑎 square divided into five equal parts. In order to 

divide this square into nine equal parts, each side a triangle has to be adjusted so that the sides are 

divided beginning from the top-left corner as follows: 

(
4𝑎

9
+
4𝑎

9
+
𝑎

9
) + (

3𝑎

9
+
4𝑎

9
+
2𝑎

9
) + (

2𝑎

9
+
4𝑎

9
+
3𝑎

9
) + (

𝑎

9
+
4𝑎

9
+
4𝑎

9
). 

As shown in Figure 12, we have six triangles and three quadrilaterals. All the triangles have the same 

length of the base, 
4𝑎

9
 , and the same height, 

𝑎

2
 ; thus, having area 

𝑎2

9
 . One has to show that the area of 

each of the two quadrilaterals with mutually perpendicular diagonals is equal to the area of a triangle. 

Indeed, similarly to the case of Figure 11, the area of this quadrilateral is equal to the product 
1

2
∙
2√2𝑎

9
∙

√2𝑎

2
=
𝑎2

9
 . Therefore, for the remaining two equal area quadrilaterals we have 𝑎2 −

7𝑎2

9
=
2𝑎2

9
 square 

units so that all nine parts into which the square was partitioned have area 
𝑎2

9
 (square units). 

 

Figure 12: Dividing a square into nine equal parts 

In general, having a square of side a, its sides are divided as follows:  

(
𝟐𝒂

𝟗
+
𝟒𝒂

𝟗
+
𝟑𝒂

𝟗
) + (

𝒂

𝟗
+
𝟒𝒂

𝟗
+
𝟒𝒂

𝟗
) + (

𝟒𝒂

𝟗
+
𝟒𝒂

𝟗
+
𝒂

𝟗
) + (

𝟑𝒂

𝟗
+
𝟒𝒂

𝟗
+
𝟐𝒂

𝟗
).  

The area of each of the six triangles with base 4a/9 linear units is equal to a2/9 . In order to find the 

area of a quadrilateral with sides a/9, 3a/9, sqrt(130)a/18, sqrt(90)a/18, one has to multiply the area 
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9 by the factor a2/81 to have area a2/9. Subtracting 8a2/9 from a2 yields a2/9 as the area of third 

quadrilateral with equal sides forming the right angle. 

Dividing a square into 11 equal parts sharing the same center 

Similarly, a square can be divided into 11 (Figure 13) equal parts. In that case, a square of side length 

a has its sides divided from the top-left corner in the clockwise order as follows:  

(
4𝑎

11
+
4𝑎

11
+
3𝑎

11
) + (

𝑎

11
+
4𝑎

11
+
4𝑎

11
+
2𝑎

11
) + (

2𝑎

11
+
4𝑎

11
+
4𝑎

11
+

𝑎

11
) + (

3𝑎

11
+
4𝑎

11
+
4𝑎

11
).  

The parts include eight triangles, each of which has the base equal to 4a/11 linear units thus making 

its area equal to a2/11 and three quadrilaterals. Using the method described above, one can calculate 

that the area of each of the two quadrilaterals with perpendicular side lengths a/11 and 3a/11 linear 

units and see that it is equal to a2/11. This implies that the area of the third quadrilateral is also a2/11. 

Therefore, all 11 parts have the same area.  

 
Figure 13: Dividing a square into 11 equal parts 

Dividing a square into 13 equal parts sharing the same center 

Similar explorations can be carried out when dividing a square into 13 equal parts sharing the same 

center. As shown in Figure 14, partitioning side length of the square beginning from its top-left corner 

can be done as follows: (1 + 4 + 4 + 4) + (4 + 4 + 4 + 1) + (3 + 4 + 4 + 2) + (2 + 4 + 4 + 3). In general, 

in the case of the square of side length a, we have the following partition: 

(
𝑎

13
+
4𝑎

13
+
4𝑎

13
+
4𝑎

13
) + (

4𝑎

13
+
4𝑎

13
+
4𝑎

13
+

𝑎

13
) + (

3𝑎

13
+
4𝑎

13
+
4𝑎

13
+
2𝑎

13
) + (

2𝑎

13
+
4𝑎

13
+
4𝑎

13
+
3𝑎

13
). 

Each of the 10 triangles has area 
1

2
∙
4𝑎

13
∙
𝑎

2
=
𝑎2

13
. 

 

Figure 14: Dividing a square into 13 parts 
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Partitioning square in 4k + 1 equal parts sharing the same center 

Using examples discussed in sections 6, 8, 10, and noting that the numbers 5, 9, 13 are one greater 

than a multiple of four, that is, are of the form 4k + 1, a more general problem of partitioning a square 

of side length a in 4k + 1 equal parts that share the center of the square can be solved. Due to the 

equalities 

(
4𝑎

4𝑘 + 1
+⋯+

4𝑎

4𝑘 + 1⏟              
𝑘 𝑡𝑖𝑚𝑒𝑠

+
𝑎

4𝑘 + 1
) + (

3𝑎

4𝑘 + 1
+

4𝑎

4𝑘 + 1
+⋯+

4𝑎

4𝑘 + 1⏟              
𝑘−1 𝑡𝑖𝑚𝑒𝑠

+
2𝑎

4𝑘 + 1
)

+ (
2𝑎

4𝑘 + 1
+

4𝑎

4𝑘 + 1
+⋯+

4𝑎

4𝑘 + 1⏟              
𝑘−1 𝑡𝑖𝑚𝑒𝑠

+
3𝑎

4𝑘 + 1
)

+ (
𝑎

4𝑘 + 1
+

4𝑎

4𝑘 + 1
+⋯+

4𝑎

4𝑘 + 1⏟              
𝑘 𝑡𝑖𝑚𝑒𝑠

)

= (
4𝑎𝑘

4𝑘 + 1
+

𝑎

4𝑘 + 1
) + (

3𝑎

4𝑘 + 1
+
4𝑎(𝑘 − 1)

4𝑘 + 1
+

2𝑎

4𝑘 + 1
)

+ (
2𝑎

4𝑘 + 1
+
4𝑎(𝑘 − 1)

4𝑘 + 1
+

3𝑎

4𝑘 + 1
) + (

𝑎

4𝑘 + 1
+

4𝑎𝑘

4𝑘 + 1
)

=
(4𝑘 + 1)𝑎

4𝑘 + 1
+
(3 + 4𝑘 − 1 + 2)𝑎

4𝑘 + 1
+
(2 + 4𝑘 − 1 + 3)𝑎

4𝑘 + 1
+
(4𝑘 + 1)𝑎

4𝑘 + 1
= 𝑎 + 𝑎 + 𝑎 + 𝑎 = 4𝑎 

the square has been partitioned in 4k – 2 triangles of base 
4𝑎

4𝑘+1
 and height 

𝑎

2
  as well as three 

quadrilaterals one of which has mutually perpendicular diagonals of lengths 
𝑎√2

2
 and  

2𝑎√2

4𝑘+1
 . Therefore, 

the sum of the areas of those 4k – 2 triangles and the quadrilateral is equal to  

(4𝑘 − 2) ∙
1

2
∙
4𝑎

4𝑘 + 1
∙
𝑎

2
+
1

2
∙
2𝑎√2

4𝑘 + 1
∙
𝑎√2

2
= (4𝑘 − 2)

𝑎2

4𝑘 + 1
+

𝑎2

4𝑘 + 1
=
(4𝑘 − 1)𝑎2

4𝑘 + 1
 . 

The joint area of the remaining two equal area quadrilaterals is equal to  𝑎2 −
(4𝑘−1)𝑎2

4𝑘+1
=

2𝑎2

4𝑘+1
 .  

Partitioning a square in 𝟒𝒌 − 𝟏 equal parts sharing the same center 

Using examples discussed in sections 7, 9 and noting that the numbers 7, 11 are one smaller than a 

multiple of four, that is, are of the form 4𝑘 − 1, a more general problem of partitioning a square of 

side length a in 4𝑘 − 1 equal parts sharing the same center of the square can be solved. Due to the 

equalities 
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(
4𝑎

4𝑘 − 1
+⋯+

4𝑎

4𝑘 − 1⏟              
𝑘−1 𝑡𝑖𝑚𝑒𝑠

+
3𝑎

4𝑘 − 1
) + (

𝑎

4𝑘 − 1
+

4𝑎

4𝑘 − 1
+⋯+

4𝑎

4𝑘 − 1⏟              
𝑘−1 𝑡𝑖𝑚𝑒𝑠

+
2𝑎

4𝑘 − 1
)

+ (
2𝑎

4𝑘 − 1
+

4𝑎

4𝑘 − 1
+⋯+

4𝑎

4𝑘 − 1⏟              
𝑘−1 𝑡𝑖𝑚𝑒𝑠

+
𝑎

4𝑘 − 1
)

+ (
3𝑎

4𝑘 − 1
+

4𝑎

4𝑘 − 1
+⋯+

4𝑎

4𝑘 − 1⏟              
𝑘−1  𝑡𝑖𝑚𝑒𝑠

) = 2
8𝑎(𝑘 − 1) + 6𝑎

4𝑘 − 1
= 4𝑎

4𝑘 − 1

4𝑘 − 1
= 4𝑎, 

the square has been partitioned in 4(k – 1) triangles of base  
4𝑎

4𝑘−1
  and height 

𝑎

2
  as well as three 

quadrilaterals one of which has mutually perpendicular diagonals of lengths 
𝑎√2

2
 and  

2𝑎√2

4𝑘−1
 . Therefore, 

the sum of the areas of those 4(k – 1) triangles and the quadrilateral mutually perpendicular diagonals 

is equal to 

4(𝑘 − 1) ∙
1

2
∙
4𝑎

4𝑘 − 1
∙
𝑎

2
+
1

2
∙
2𝑎√2

4𝑘 − 1
∙
𝑎√2

2
= 4(𝑘 − 1)

𝑎2

4𝑘 − 1
+

𝑎2

4𝑘 − 1
=
(4𝑘 − 3)𝑎2

4𝑘 − 1
 . 

The four-color problem 

Another artistic exploration considered in this paper deals with finding the number of regions into 

which a square can be divided by connecting specific points belonging to its sides (including vertexes) 

that were used in partitioning a square into equal parts (Figure 16). This task not only brings learners 

back to numbers, which can be found in the Online Encyclopedia of Integer Sequences, but it leads 

to a classic domain of mathematical knowledge known as the Four Color Problem (Appel & Haken, 

1977). For example, as shown in Figure 14, whereas two colors are enough to color eight and 14 

regions, already 23 regions require three colors. We argue that collateral creativity while being an 

accidental outcome of classroom activities is nonetheless a favorable one as finding answers to 

collaterally creative questions leads to epistemic development of both more and less knowledgeable 

practitioners of mathematics education. 



 215 

 

Figure 15: Counting the number of regions 

 

Figure 16: Three colors are needed for 23 regions 

Conclusions 

In summary, we provided several examples of how mathematics and artistic expression are connected 

giving boost to collateral creativity:  

• Arts have inspired many mathematicians to create new insights into the beauty of patterns and 

relationships (Halmos, 1968). 

• Educators of the past and modern times see in artistic expression a means to visualize 

mathematics thus making learning more intuitive and dynamic.   
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• Through these intrinsic connections, new (and unexpected!) ideas can emerge thus opening a 

door to collateral creativity (Abramovich & Freiman, 2022). 

Awareness of this collaterally creative outcome can help teachers to invite students to more advanced 

and complex mathematical explorations and thinking. 
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Poetry and mathematics in relation 

Richard Barwell1 and Yasmine Abtahi23 

 

We explore the value of poetry for thinking critically about mathematics and education. Although 

poetry has been proposed as a tool for teaching mathematics or for analysing mathematics classroom 

data, we are interested in something slightly different. We argue that reading some situations through 

poetry alongside mathematical readings, the limitations of mathematics become more apparent. We 

illustrate this idea with two examples drawn from our own ongoing work. One example concerns the 

management of wolf populations, looked at from the perspective of mathematical modelling and a 

poem by Ted Hughes. The other concerns the relational nature of mathematical knowing, looked at 

from the perspective of a poem by Rumi read against the Ontario mathematics curriculum. 

Keywords: Mathematics education, epistemology, poetry. 

 

Introduction 

We are critical mathematics educators interested in how different ways of thinking and talking about 

mathematics and mathematics education have wider effects in the social and ecological worlds that 

we live in. In this article, we consider how poetry can contribute to this project, based on some of our 

recent writing. The mathematics education literature does include some writing about poetry, as a 

metaphor for teaching mathematics (Taylor, 1980), or about poetic linguistic patterns in students’ 

mathematical talk (Staats, 2008), to give two examples. Our goal in this paper, however, is not to 

discuss how poetry can be a useful tool for teaching mathematics or can be a useful tool for analysing 

mathematics classroom interactions, although it clearly has potential to be both. Instead, we consider 

how poetry can help us to better understand relational aspects of mathematics, prompted by the kinds 

of responses that poetry can provoke. Like Khan (e.g., 2011), we see the potential of engaging with 

poetry for thinking differently about mathematics and mathematics education from a critical 

perspective. Khan’s project is to produce mythopoetic texts as a way to propose a mathematics 

curriculum that explores “the pressing issues of grief, trauma and reconciliation” and “its potential 

for and role in decolonisation, liberation, justice and sustainability” (p. 17). Our interest in this paper 

is not so much in producing poetic curriculum texts; rather, we reflect on how our engagement with 

poetry (as readers) opens up new ways of thinking and knowing about mathematics education in 

relation to social justice and sustainability. 

(In)visible interrelations 

Critical mathematics, particularly as represented by the work of Skovsmose (1994), has argued that 

mathematics has a “formatting” role in society. That is, the language game of mathematics embeds 

particular logics and assumptions, often through technology, into society and has real effects. O’Neil 
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(2017), for example, examines how human-designed mathematical systems produce structural 

inequality in relation to policing, health, insurance or advertising. In our own work, we have explored 

how mathematics shapes discourses related to climate change, environmental sustainability, obesity, 

or social justice (Abtahi, 2022; Barwell, 2018; Hall & Barwell, 2021). We think about these kinds of 

issues in terms of the sorts of relations that mathematics makes visible or obscures. This is important 

because, from a critical mathematics perspective, the knowing of mathematics could limit or restrict 

our experiences and our understanding of the social and environmental world and our place within it.  

As mathematicians, we often understand our lives through networks of numbers and calculations. 

Through mathematics our conceptualisations of our lives and of the world are through a highly 

quantified framework (Ernest, 2010). Such discourses and ways of seeing and being become a 

particular controlling component in societies and in states, “in a society in which what matters is what 

counts or is counted” (Ernest, 2021, p. 12). Mathematics or mathematics-informed discourses may, 

for example, through mathematical modelling, construct the Earth’s climate as a controllable system, 

and thus a relation in which humans control the Earth (Barwell, 2018). Or mathematical discourses 

may construct some forms of mathematics as universal, so that a relation of dominance is constructed 

between people who have access to these forms and those who do not (Abtahi, 2022). We have both 

written about the problematic way in which such relations are implicit and uninterrogated.  

In this paper, we explore how poetry has helped us to interrogate some of these relations and that 

would otherwise have been unnoticed. We ask how engaging with poetry may influence our work as 

mathematics education researchers, especially with respect to challenging questions about equity, 

epistemology, or ecological collapse. For us, the exploration of the usefulness of poetry has less to 

do with the specific messages conveyed by the poetry. We are interested in how the poems provided 

us with alternative stories and ways of thinking that can draw us into different forms of attention and 

awareness. Poetic thinking, for example, may include dimensions such as linguistic metaphor, 

polysemy, ambiguity and emotional force. While these dimensions may also be present in 

mathematics, they are not necessarily foregrounded in situations in which mathematics is used to 

make sense of the world. Hence, poetry offers alternative ways of thinking that we seek to set in 

relation with mathematics.  

In what follows, we first conceptualise in what ways providing alternative stories and ways of 

thinking is not only important but also necessary for understanding the types of relationalities that are 

constructed by mathematics. We then give two examples of our experiences with using poetry to 

think differently in mathematics education. 

Alternatives and stories: Truth versus relations! 

From the perspective of Skovmose’s critical mathematics education, we make decisions using 

mathematics, often without entirely realising, and certainly without paying much attention to the 

effects that mathematics has in organising our decision-making space. For example, individuals make 

decisions about their lives based on their body mass index (Hall & Barwell, 2022). They may choose 

to change their diet or lifestyle, perhaps based on advice from a medical practitioner. Governments 

make decisions about energy policy based on mathematical models of the climate (Barwell, 2018). 

And teachers make decisions about what to teach based on standardised test results and prevailing 

ideas about what mathematics is. But these decisions can all have harmful consequences (see, for 

example, Abtahi, 2022).  
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In our previous work (and that of many other critical mathematics educators), we have become aware 

of how mathematics is implicated in structuring hierarchies of different kinds. For example, the body 

mass index is implicated in hierarchies of desirable body types, climate models are implicated in an 

anthropocentric response to climate change, and the ‘standard’ form of mathematics taught in schools 

is implicated in the perpetuation of settler colonialism in Canada. These hierarchies are constructed, 

problematic, forms of relation, but others are possible.  

More specifically, mathematics is implicated in constructing a hierarchical relationship between 

humans and other species, derived from epistemological assumptions that construct mathematics as 

a tool for intervening in and operating on the ecosystem, even in many cases as part of efforts to undo 

the disastrous effects of human activity on our planet. These assumptions are connected to a deep 

late-modern cultural understanding of humans as being distinct from Nature (Morton, 2010), within 

a narrative of human exemptionalism (Bowers, 2001; Catton & Dunlap, 1980). This hierarchical 

relationship is linked to others that produce racism, sexism, classism and so on, all of which can be 

traced back in part to the mathematisation of different aspects of the social-ecological world 

(Martusewiczet al., 2014). This analysis has led to rethink how mathematics is part of relations 

between humans and other species (Gutiérez, 2017), including from a dialogic perspective (Barwell, 

2022; Barwell et al., 2022).  

Equally, mathematics constructs specific hierarchical relationship between some humans and some 

other humans.  This construct also carries an epistemological assumption. That is, the assumption that 

mathematics of a group of people are more real mathematics than mathematics of another. Abtahi 

(2022) notices this hierarchical relationship in her teaching of Canadian provincial-mandated 

mathematics to a group of Canadian indigenous colleagues. Reflecting on her teaching, she explains 

that although she deployed her cultural resources in the process of teaching the mathematics and 

similarly encouraged her students to do so, she still limited them to acquiring the kinds of knowledge 

that was counted as mathematics in the Ontario mathematics curriculum. She says: “In my knapsack, 

I carried fragmented and compartmentalised sets of knowledges, with little to no regard for any 

particular epistemologies, ways of knowing” (p. 157) specifically of my Canadian indigenous 

colleagues. Consequently, she sets out to explore the kinds of harm she had caused, through the type 

of mathematics that she taught and through the type of curriculum that she used. 

For Rorty (2006), the “best answer” to the question of how to make better decisions “is that 

individuals become aware of more alternatives. The source of these new alternatives is the human 

imagination. Rorty says that imagination “is the ability to come up with new ideas, rather than the 

ability to get in touch with unchanging essences” (p. 372). This is exactly why poetry has become 

important for our work in mathematics education research (again, see also Khan, 2011). By thinking 

with poetry alongside mathematics, we are working with two rather different ways of knowing at 

once, which prompts our imagination: in particular, it brings to light alternatives to mathematical 

knowing which might turn out to be valuable. 

One feature of mathematical discourses is that they are highly naturalised; it is difficult to see how 

they could be different, or, to say it another way, they create blind spots. Poetry has helped us to 

attend to relationalities which previously have been in our blind spots. Poetry has also given us an 

understanding of the sorts of cruelty that humans are capable of, and which mathematics makes 
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invisible. That is why we believe that seeking alternatives to understanding the world with 

mathematics might help to make visible what has been made invisible through mathematics.  

In summary, we are both very aware of how mathematics can be implicated in problematic relations 

(although we should be clear that these relations are made by humans, not by some externally existing 

mathematics). At the same time, we do not rely on mathematics as our only way of making such 

relations. In particular, we have recently reflected on how poetry offers us a way into different kinds 

of relations, which in turn allows us to reflect on the blind spots of (our) mathematics. To illustrate 

these reflections, we offer two examples from our ongoing work. 

Richard’s example: Wolf culling 

I recently read about a wolf cull in the US mid-West4. I found the report upsetting, but was also struck 

by how mathematics was present, such as in information about the “management” of the wolf 

population. The report prompted me to return to a poem by Ted Hughes (1989), called Wolfwatching. 

I have been working on a piece of writing that weaves responses to the poem with analysis of the 

mathematical discourses apparent in scientific or political texts.  

In scientific writing, I noticed that mathematical discourses (equations, graphs, tables, descriptions 

of methods of estimating wolf populations, mathematical models), render wolves as anonymous 

variables, which feed into broader ideologies in which wolf populations can and should be “managed” 

in ways that are driven by human needs and desires, such as in relation to agriculture, hunting or 

conservation. Here’s an example from a scientific text: 

Without estimates of mortality and births that are unbiased, precise, and accurate (approximating 

the true values with high certainty), policies that promote the killing of wildlife will risk 

unsustainable mortality and raise the probability of a population crash. The current government of 

the state of Wisconsin risked that crash when it issued high wolf-hunting quotas and when it 

liberalized culling from 2012 to 2014, both done without presenting careful, transparent 

accounting of mortality and births. (Treves et al., 2017, p. 29) 

These discourses reflect the human exemptionalism paradigm that see humans as managers of the 

natural world, whether for purposes of economic exploitation (e.g., agriculture) or conservation 

(many of the scientific texts that I found were about conservation). The mathematics is familiar, even 

comfortable, and provides an apparently clear portrait of the state of wolf populations, as well as how 

they may best be managed through “harvesting” a certain number of wolves.  

The poem, Wolfwatching, is, among other things, an observation of a wolf in a zoo. The poem evokes 

a different kind of relation from that engendered by mathematical models; it highlights the 

individuality and dignity of the wolf and thus provides a contrast to the mathematically produced 

relation between humans and wolves. The poem highlights the being of wolves, as well as the relation 

between humans and wolves through the act of being in relation with an individual wolf. The poem 

evokes the lupinity of the wolf through describing its situation in captivity, its condition (getting old) 

and implies how the wolf might feel about its situation. For example, the wolf’s eyes are described 

 
4 Stanley, G. (2021, February 25). As Minnesota considers wolf hunt, Wisconsin hunters blow past quotas. Star Tribune. 

https://www.startribune.com/as-minnesota-considers-wolf-hunt-wisconsin-hunters-blow-past-

quotas/600027577/?refresh=true  

https://www.startribune.com/as-minnesota-considers-wolf-hunt-wisconsin-hunters-blow-past-quotas/600027577/?refresh=true
https://www.startribune.com/as-minnesota-considers-wolf-hunt-wisconsin-hunters-blow-past-quotas/600027577/?refresh=true
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as “withered in / Under the white wool”, showing his age, as when “He yawns / Peevishly like an old 

man.”  

Reading the poem, having read about the wolf cull, made me think about the lifeworld of each wolf, 

their relations with the other members of their pack, their place in the complex web of their ecosystem. 

It made me think about each of the 216 wolves that we killed in the cull and about the impact on their 

relatives; by impact, I mean the emotional effect of losing pack members, where each wolf is an 

individual. Set against the mathematically informed discourses of wolf management, the poem 

allowed me to see how mathematics obscures these relations, rendering wolves collective and 

anonymous, and also how this relation is obscured, due to the discourse of mathematics as a direct 

description of the world, rather than as a form of watching. The poem, then, highlights the connection 

between two beings (the wolf and the watcher) in a way that the mathematically informed texts did 

not. That is, a series of mathematical models or statistical information obscures the relation between 

humans and wolves, as well as the relations between individual wolves and the relations of wolves 

within their ecosystem. The question then arises as to whether mathematics can be implicated in 

discourses that keep such relations visible. 

Yasmine’s example: What did I do, this time? 

For years, I have taught Ontario mathematics, both to students and to pre-service teachers. I have 

always tried to incorporate two things into my teaching: 1. my own cultural experiences and ideas; 

and 2. issues of social and ecological justices. I invite my students to do the same. I learnt to do this 

from the vast body of literature in critical mathematics education research endorsing both these 

points. I was relatively comfortable in my teaching (in my being of who I am as a teacher), until I 

was asked to teach a dominant form mathematics in a Canadian Indigenous context (Abtahi, 2022).  

Obscured by my own comfortable teaching position, I started this teaching journey by doing the two 

things I used to do (see things 1 and 2, mentioned above). In a circle of teaching, interacting with my 

students and reflecting on my teaching, I sensed strongly that something was not right. Was it me, a 

Pers teaching Western mathematics to Canadian Indigenous colleagues? Was it the mathematics that 

I was teaching? The course was only 40 hours long but my internal tension expanded over months. 

This is where the philosophical standpoint of Rumi, written in the form of poetry helped me make 

sense of my tense internal feelings.   

Rumi has a short poem that portrays a construct of life as beings-in-relation. He relates living to 

making circles using a drafting compass. To live—as effective as a circle that is drawn by compass—

one needs to have a leg rooted in personal experiences and reflections and a leg that moves and makes 

relations with humans, plants or animals that one is in relation with. I called Rumi's portrayal of an 

individual's life “self-in-relations.” In his poem, Rumi is not telling me how to think or what is right 

or wrong. Instead, it leaves me to make sense of the imageries of life, the compass, its two legs, and 

drawing circles based on my own experiences. This free and figurative form of the poem evoked 

alternative stories, with which I was able to re-make sense of mathematics and its teaching, different 

from what I used to sense. In teaching Western mathematics in a Canadian Indigenous context, instead 

of thinking about mathematics as a set of knowledges listed in the Ontario curriculum, I started 

thinking about the kinds of relations mathematics and its teaching and learning put us into and how 

these relations affect us. 
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My open interpretation of the poem made me think about myself and my students as selves-in-

relations. Each ‘self’ having two legs, one rooted and one moving. We were all rooted in our different 

kinds of literature, experiences, stories, worldviews, and knowing, making dynamic relations with 

each other and with mathematics. It is rather obvious that my students and I were making dynamic 

relations (teachers and students quite often do this). My emphasis here is that we were making 

dynamic relations with mathematics too.  

Through the interpretive lens of Rumi’s poetry, the mathematics I was comfortable teaching was 

becoming less and less comfortable. So were my methods of teaching (i.e., with the two things). Let’s 

assume that I actually tried my best to incorporate my cultural understandings and examples into my 

teaching. Let’s assume that my students did the same. It was mathematics that remained rather rigid. 

No matter how inclusive I tried to be, I couldn’t stop noticing that I was still bringing the mathematical 

knowledge(s) that the Ontario curriculum deems to be the “right” kinds of knowledge(s) to acquire; 

examples include the teaching of fractions and square numbers and the teaching of time using clocks. 

The types of mathematical knowledges that I taught ignored my students (and also myself) as selves-

in-relations. Neither the knowledges of mathematical concepts, nor the pedagogy of teaching and 

learning of these concepts was attuned to the two metaphorical legs of the students, rooted and moving 

in relations valued in Canadian Indigenous communities. It was through the understanding of these 

relations that I was able to express my tense feeling. I realised that my teaching of Ontario 

mathematics could have been harmful to my students, as it ignored their selves-in-relations.  

Mathematics as a system of knowledge should help us notice things, reflect on them, and make 

decisions. This is similar to what Skovsmose (1994) refers to as the formatting power of mathematics. 

Nevertheless, the knowledge of mathematics alone did not help me notice or imagine the webs of 

relations my students—whose experiences and ways of living may be very different from mine—

were in. The imaginary message of Rumi’s poem did. I do not take this visibility lightly; as I argued 

elsewhere, if we cannot have such imagination, we are likely to act in ways that are harmful to these 

others’ individual or communal well-being (Abtahi, 2022). 

Reflections 

We reflect on these two examples to discuss what prompted us to draw on poetry in our writing, as 

well as how this poetry brought into relation different dimensions of mathematical and non-

mathematical experience. In both cases, poetry led us to see and to feel relations with Others, that are 

missing in mathematics. In both examples, unless we imagine the others as selves-in-relation, our 

actions, no matter how mathematically correct, may be harmful to their individual or communal well-

being. The language game of poetry, we suggest, helps to make salient this important idea.  

Another important point that helped us reflect on the usefulness of the poetry is the difference between 

the more truth-based outcome of making sense of mathematics and the more relational-based outcome 

of making sense of poetry. Making sense of mathematics leads to a kind of truth, such as the human 

need to kill a calculated number of wolves yearly in order to ‘manage’ the population. Making sense 

of poetry leads to an understanding of the relations involved when we kill “mathematically” just one 

wolf, we are killing a mother caring for five wolf pups, or an alpha male who leads a pack. Or that 

what we might think of as the right mathematics to teach could be harmful to the students whose 

rooted legs and the legs in relations are ignored.  
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These examples lead us to propose that thinking with poetry alongside thinking with mathematics 

leads to a valuable dialogue of perspectives and ideas. We are not suggesting that mathematics should 

be turned into poetry or that poetry should be incorporated into mathematical thinking (although these 

might be interesting things to explore). Nor are we arguing that poetry could be useful for teaching 

mathematics or could lend itself to ways of analysing data collected in mathematics classrooms. 

Rather, we are suggesting that by reading the world with poetry alongside reading the world with 

mathematics can lead to a critical understanding of what mathematics is doing. Wolfwatching 

expresses something about wolves that mathematics cannot capture, thus revealing a blindspot. Rumi 

expresses something about humans’ place in the cosmos that mathematics curricula do not generally 

include. In Rorty’s terms, poetry offers alternative stories, and alternative ways of constructing 

stories, from those available in mathematics or mathematics education.   

Our goal in this paper was not to provide a definitive method. We have shared some reflections of 

our own engagement with poetry and mathematics, setting them in relation to each other and noting 

the new awareness this provoked in us. We hope our examples prompt further reflections drawing on 

other examples. We also wonder what other language games could be brought into relation with 

mathematics and what awarenesses they might prompt.  
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Leonardo Da Vinci’s methods of calculation of the area of a circle and 

their counterparts in modern mathematics textbooks 

Viktor Freiman1 and Alexei Volkov2 

 

Our paper discusses Leonardo da Vinci’s methods of calculating the area of a circle which seem to 

be reflected in modern curricula (e.g. in Canada, NB) and teaching materials, online (e.g. GeoGebra 

applets) and printed (modern textbooks). Among the historical sources we analyze Da Vinci’s 

original drawings (e.g. Codex Atlanticus), his explanations of the procedure and (in Latin), and its 

French (by Ravaisson-Mollen and Russian (by Zubov) translations. Didactical implications are 

briefly discussed in the conclusion.     

Keywords: Area of a circle, rearrangement method, da Vinci’s drawings, procedure for calculation, 

didactical implications 

 

Introduction  

In our paper we pursue our study of the “matching sectors method” (or “rearrangement method”) 

used to justify the formula of the area of a circle. This method is often mentioned in school curricula 

and found in numerous textbooks as well as in teaching materials available online (Freiman & Volkov 

2019; 2022). It appears plausible to conjecture that this method was originally used by professional 

mathematicians of Antiquity and the Middle Ages in the West and East,3 and only later was borrowed 

by mathematics educators and placed into school textbooks. This transfer thus may be considered a 

case of “didactical transposition” from “knowledge to be used” to “knowledge to be taught and 

learned” (Chevallard, 1985 [1991]; Chevallard & Johsua 2007; Chevallard, Barquero et al., 2022;4 

Kang & Kilpatrick, 1992). The earliest cases of the “rearrangement method” that we were able to 

identify in the Western textbooks were produced in the first half of the 19th century (Lardner, 1835, 

1840). It became very popular since then, and various versions of it can be found in numerous Western 

mathematics textbooks of the 20th century (Freiman & Volkov 2022).  

What were the particular reasons for the use of this presumably archaic method for instruction in the 

19th and especially in the 20th century? Was its use a direct continuation of some didactical traditions 

of the remote past or an attempt to improve teaching of a relatively difficult topic with the help of 

innovative didactical approaches combined with refurbished ancient methods? It remains equally 

unclear where from did the method of “matching sectors” come to the modern school textbooks and 
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why was it perceived as an especially “efficient” tool for teaching. Was it because Archimedes’ (287-

212 BC) “exhaustion method”5 involved a rather sophisticated reasoning and thus was considered 

difficult for beginners?6 Was it because the method of “matching sectors” used in textbooks may have 

seemed more “didactically attractive” since it looked easy enough to be understood even by relatively 

young learners? This simplicity, along with visual and dynamic nature of rearrangements, most 

probably seemed to the modern educators to be the most efficient way to construct classroom 

activities, which would be “hands-on,” practical, investigative, and providing students with initial 

intuition that could lead to more complex mathematical concepts (see, for example, Menghini, 2015). 

However, while some of these methods indeed allowed a relatively simple visualization, some others 

involved concepts and ideas particularly difficult for young learners. The infinitesimal methods of 

calculation of the areas of a circle and its parts arguably belonged to the latter category. The search 

for appropriate didactical tools applicable in this case led some mathematics educators to the use of 

the “method of rearrangement of sectors” or, more precisely, of a group of methods based on the 

division of a circle into sectors followed by rearrangements of these sectors and investigation of the 

ensuing approximations. For instance, Johnson and Mowry (2016, p. 574) provide a typical 

interpretation of the method. The demonstration begins with a small number of sectors (say, eight) 

(See top left figure in Figure 1). Then the authors state that once the number of sectors increases “the 

rearranged figure becomes quite rectangular” (See bottom right figure in Figure 1). One can 

immediately notice that the upper and lower sides of the figure, which are constructed of 32 sectors 

are shown as straight lines while its left and right sides are vertical. Both representations are therefore 

mathematically erroneous. Moreover, the equality of the areas of the circle and of the rectangle 

remains unexplained. The words “quite rectangular” certainly do not suffice to prove that the area of 

the circle is equal exactly to the product of the radius and circumference. Apparently, much of the 

work dealing with these subtleties is left to the teacher.    

 

 

Figure 1: Calculation of the area of a circle according to Johnson and Mowry (2016, p. 574) 

 
5 Archimedes 1544, pp. 44-46; 1615, pp. 128-133; 1676, pp. 81-97; 1880, pp. 257-271.  

6 For a discussion of Archimedes’ method see, for instance, Dijksterhuis 1987 [1956] (esp. see pp. 222-240); Knorr 1976; 

1986; 1989, pp. 375 ff. 
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These didactical considerations led us to the following conjecture about the concepts of the 

mathematics educators who designed these approaches. They arguably adopted an assumption 

concerning the growth of the child’s understanding of geometrical concepts as mirroring the stages 

of the historical genesis of these concepts (Schubring, 1978, 1988; Simon, 1995; Mosvold, 2002). 

This conjecture most likely prompted a search of earlier sources of the method that presumably 

inspired the authors of the studied textbooks.  

The preliminary results of our investigation can be summarized as follows. Several authors of the 

modern textbooks mentioned the works of Johannes Kepler (1571–1630) (Baron, 1969) and of the 

Japanese mathematician Satō Moshun 佐藤茂春 (whose name can also be read as Satō Shigeharu, 

dates of life unknown) (Smith and Mikami, 1914)7￼ among others. Alexander Bogomolny’s site  

refers to Petr Beckmann’s (1924–1993) A History of Pi (1976 [1971]) who, in turn, mentioned 

Leonardo da Vinci’s (1452-1519) method; the latter thus became the focus of the present paper. 

Indeed, page 518, recto, of the collection of Da Vinci’s manuscripts titled Codex Atlanticus contains 

drawings showing the rearrangement of a circle divided into 16 sectors; the resulting shape is “close 

to rectangle” and is used by Leonardo to calculate of the area of the circle (Fig. 2). On the back side 

of the same page (p. 518 verso) one can find a more detailed drawing of the steps to be made to 

calculate the area of the sector of a circle; see Fig. 3. www.cut-the-knot.com refers to Petr 

Beckmann’s (1924–1993) A History of Pi (1976/1971) which, in turn, mentions Leonardo da Vinci’s 

(1452–1519) method. The latter thus became the focus of the present paper. Indeed, page 518, recto, 

of the collection of Da Vinci’s manuscripts titled Codex Atlanticus contains drawings showing the 

rearrangement of a circle divided into 16 sectors; the resulting shape is “close to rectangle” and is 

used by Leonardo to calculate the area of the circle (Figure 2). On the back side of the same page (p. 

518 verso) one can find a more detailed drawing of the steps to be made to calculate the area of a 

sector of a circle; see Figure 3.  

 

Figure 2: A diagram from Leonardo da Vinci’s Codex Atlanticus, p. 518 recto. The circle is subdivided 

into 16 sectors (da Vinci, 1513). 

 

 
7 See Chapter 9 of the treatise of Satō’s treatise titled Kaisei tengen shinan 改正天元指南 (Modified and Corrected 

“Compass of the [method] of Celestial Element”) published in 1795. For information on Satō see Smith and Mikami 

1914, pp. 86 ff.  



 228 

 

Figure 3: Diagrams from Leonardo da Vinci’s Codex Atlanticus, p. 518 verso. Calculation of the area 

of a sector. The sector is subdivided into eight smaller ones, then its identical copy is attached to it in 

order to form a rectangle (da Vinci, 1513).  

It is still unclear what were the sources of Da Vinci’s drawings and of his short notes related to the 

area of a circle. However, these drawings suggest that one should not take for granted the claim made 

by Beckmann: 

“[Da Vinci] did not have much of a mathematical education, and in any case, he could use 

little else, for Europe in his day, debilitated by more than a millennium of Roman Empire and 

Roman Church, was on a mathematical level close to that achieved in ancient Mesopotamia. 

It seems probable, then, that this was the way in which ancient peoples found the area of the 

circle” (Beckmann, 1971/1976, p. 19).   

Indeed, the complexity of Da Vinci’s approach to acquisition of scientific knowledge deserves a 

separate study. Here we can only briefly mention Henri Lemonnier’s (1842–1936) remark made in 

his analysis of Pierre Maurice Marie Duhem’s (1861–1916) study of Da Vinci’s heritage: 
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Les historiens de Léonard, lorsqu’ils ont étudié le savant et le penseur, ont généralement cherché 

et trouvé en lui « l'autodidacte par excellence », et ils voyaient là une gloire de plus, celle de 

l'homme dont le génie a tout deviné sans avoir eu de précurseur8 (Lemonnier, 1917, p. 27).  

On the contrary, Duhem tended to highlight Da Vinci’s capacity to read and assimilate what he was 

reading. On the same page, Lemonnier cites Duhem as follows : 

Non seulement les notes manuscrites de Léonard montrent qu’il avait beaucoup lu, mais elles 

témoignent de l’admirable puissance avec laquelle il s’assimilait tout ce qu'il lisait…Il est 

telle proposition de mécanique, d’hydraulique, de géologie, dont nous avons pu avec certitude 

retrouver la source, qui n’est assurément qu’un souvenir de lecture, et dont il est facile de 

relever quatre, cinq, six énoncés légèrement différents les uns des autres... 9,10￼   

At this point, the connection between Da Vinci and Luca Pacioli (1445–1519) needs to be discussed. 

Pisano (2016), for example, points out that being “above all a clever and very creative polymath but 

certainly not a mathematician like, for example, Luca Pacioli” (Pisano, 2016, p. 104), Da Vinci, while 

focusing on practical areas in which he operated as “a technician”,  he felt a need for “mathematical 

and geometrical abstraction” (p. 104). In this respect, Da Vinci’s friendship with Pacioli extended the 

scope of influence the latter could have on his relation to mathematics. However, Pisano (2016) 

argues, “Leonardo improved his knowledge, particularly of Geometry, but despite this, his 

achievements remain immature as compared with the deep mathematical ideas of Pacioli (p. 104).” 

In turn, Pacioli’s work might have shown an indication of an Archimedian influence. For instance, 

Høyrup (2022) states that Pacioli in his Summa de arithmetica (1494) “refers in the dedication to 

Duke Guidobaldo to ‘the great Syracusan geometer Archimedes’ who with ‘his machines and 

mechanical inventions kept Syracuse safe for long’” (p. 185). Moreover, on the same page Høyrup 

also cites Marshall Clagett’s (1916–2005) work Archimedes in the Middle Ages (Clagett, 1978) to 

stress that Da Vinci eventually drew on “medieval Archimedean mathematics.”  

Høyrup’s quotation from one of the translations of Da Vinci’s works is of particular interest for the 

purpose of our analysis of Leonardo’s study of the area of a circle. It shows Da Vinci’s understanding 

that Archimedes “never squared any figure with curved sides” but “only squared the circle minus the 

smallest portion that the intellect can conceive, that is the smallest point visible” (Høyrup 2022, p. 

185). In order to study Da Vinci’s representation of the method, we used his original manuscripts (Da 

Vinci, 1888, 1890) published by Ch. Ravaisson-Mollien (1848–1919) and their translations by V. P. 

Zubov (В.П. Зубов, 1900–1963) (Zubov, 1935, 1955). 

Leonardo da Vinci and his method of calculation of the area of a circle  

In his second volume of his works on Leonardo da Vinci P. Duhem devoted a short chapter titled 

“L’infiniment grand et l’infiniment petit dans les notes de Léonard de Vinci” (1909, pp. 49–53) to 

 
8 English translation: The historians of Leonardo, when they have studied the scientist and the thinker, have generally 

sought and found in him "the autodidact par excellence", and they saw in this one more glory, that of the man whose 

genius has everything guessed without having had a precursor. 

9 In a footnote Lemonnier specifies that he refers to pp. 340-341 of Duhem 1909. 

10 English translation: Not only do Leonardo's handwritten notes show that he had read a great deal, but they testify to the 

admirable power with which he assimilated everything he read... There is such a proposal in mechanics, hydraulics, 

geology, whose source we have been able to find with certainty, which is certainly only a memory of reading, and from 

which it is easy to identify four, five, six statements slightly different from each other... 
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Leonardo’s concepts of infinitely small and infinitely large entities. Duhem quoted Leonardo’s claim 

that “La Géométrie est infinie parce que toute quantité continue est divisible à l'infini dans l'un et 

l'autre sens11￼ (p. 50). Duhem borrowed this quote from Manuscript M of the Bibliothèque de 12￼ 

and provided his own reconstruction of Leonardo’s drawing that was supposed to prove (or at least 

to illustrate) Leonardo’s claim. Surprisingly, Duhem does not mention here Leonardo’s fragment and 

diagrams directly related to the calculation of the area of a sector and a circle 13￼ The text of this 

fragment of Leonardo reads as follows (we keep the original spelling and punctuation):  

QUADRATURA DEL SETTORE LV — Presta il triangolo a b c14 alla portione b c d ediuidilo 

in settori come sidimostra ne la seconda fighura g h i k di poi separaliangholi dessi sectori lun 

dallaltro in modo che tal sia losspatio interposto infra essi angholi quale he lebase spia nate 

dessi sectori[.] Dipoi pre sta alli settori della terza fighura r s t v altrettanti settori ci o a e 

altrettanta valuta earai fac to vn quadrilatero chee n m o p[.] Fatto ilquadrilatero della quarta 

fighura leuanelameta enraile vato lo sotto sector li settori presstati erestera vna quanti ta 

equale alla seconda fighura g h i k[.] Dipo laqual restera quadrata[.] — Oltre addi quessto 

leverai tanto des so quadrato chessia equivalente al triangolo della prima fighura a b c 

eressteratti la portione dun ci erchio quadrata cioe la portione b c d laqu della quale illato cur 

vo sidirizzo cholmoto fatto sopra laretta h e d f  ecquesta bella sola e vera reghola da dare la 

quadratura dongni portion di cier chio minor del semi circhulo della quale nulla scientia vale 

senon chol prestare e chol moto predetto disopra ec.15  

The French translation of this excerpt provided by Ravaisson-Mollien reads as follows: 

Quadrature du secteur 1v. Prête le triangle a b e à la portion b c d, et divise-le en secteurs, 

comme on le démontre dans la seconde figure g h i k; ensuite, sépare les angles des secteurs 

les uns des autres, de façon que l'espace interposé entre ces angles soit tel que sont les bases 

aplanies de ces secteurs. Ensuite, prête aux secteurs de la 3ème figure r s t v autant de secteurs, 

c'est-à-dire leur équivalence, et tu auras fait un quadrilatère qui est n m o p. Le quadrilatère 

de la 4ème figure étant fait, enlèves-en la moitié, et tu auras enlevé le secteur de dessous les 

secteurs prêtés; il restera une quantité égale à la 2ème figure g h i k […], qui restera carrée. 

Outre cela, tu enlèveras de ce carré ce qu'il faut pour qu'il soit équivalent au triangle de la 

première figure a b c, et il te restera la portion d'un cercle rendue carrée, c'est-à-dire la portion 

b c d laq, dont le côté courbe s'est dressé avec le mouvement fait sur la droite […] e d f. C'est 

là la seule et vraie règle pour donner la quadrature de chaque portion de cercle plus petite que 

le demi-cercle, pour laquelle aucune science ne vaut si ce n'est par prêt et par le mouvement 

dit ci-dessus, etc. 

 
11 English translation: Geometry is infinite because any continuous quantity is infinitely divisible in either direction  

12 Da Vinci 1890, Ms M, fol. 18r. 

13 Da Vinci 1888, Ms E, folios 24v-26v. Note that on the first page of this manuscript Leonardo already gives his verbal 

formula for the area of a circle: “Ilcierchio he equale avnquadri latero fatto della meta deldiamitro ditalcierchio 

multiplichato nella meta della circhunferentia delme desimo cierchio” (we keep Ravaisson-Mollien’s transcription of the 

original document). The latter author provides his French translation on the same page; it reads as follows: “Le cercle est 

égal à un quadrilatère fait de la moitié du diamètre de ce cercle, multiplié par la moitié de la circonférence du même 

cercle,” that is, “The circle is equal to a quadrilateral made of a half of the diameter of this circle, multiplied by a half  of 

the circumference of the same circle.”   

14 Transcription of Ravaisson-Mollien reads “a b e”; see below.  

15 Da Vinci 1888, vol. 3, Ms E, folio 25r. 
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Indeed, this note is located within a series of folios devoted to manipulations with the circles and 

spheres and accompanied by comments of Da Vinci. More specifically, Folio 24 (verso) deals with 

the surface of a sphere, which is first divided into eight equal parts, and then these parts go through a 

series of transformations (such as ‘flattening’ and ‘rearrangement’) to complete a rectangular figure 

(Figs. 4–8). While the process described by Da Vinci is unclear and would require a separate study, 

one can clearly see in these pictures that each of two shapes representing a quarter of a circle is cut 

into 8 smaller equal sectors and then combined with the other eight to produce a figure resembling a 

“rectangle” in the same way that can be found in today’s school textbooks and online resources. The 

above-mentioned representation of a quadrature of a sector is found in Folio 25 (recto) in a discussion 

devoted to the quadrature of a segment of a circle (Figure 9). V.P. Zubov (1955, p. 72) cites the 

Atlantic Codex (p. 98v) in which Leonardo includes methods allowing to conduct quadratures of 

surfaces delimited by curves. Interestingly, Da Vinci mentions that the square is the “end of all 

transformations” of such surfaces.  

 

Figure 4: Figure from Da Vinci 1888, Manuscript E, Folio. 24 verso 
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Figure 5: Upper part of the figure from Da Vinci 1888, Ms E, folio 24 verso (reconstructed by the 

authors) 

 

Figure 6: Upper part of the figure from Da Vinci 1888, Manuscript E, folio 24 verso (reconstructed by 

the authors) 
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Figure: 7: The lower part of the figure from Da Vinci 1888, Manuscript E, folio 24 verso (redrawn by 

the authors) 

 

Figure 8: Lower part of the figure from Da Vinci 1888, Manuscript E, folio 24 verso combined with 

the figure in the upper part (reconstructed by the authors) 

Our reconstruction of the method described in Da Vinci’s note is based on the four sketches presented 

in Figure 9 where we see, in the first sketch, a segment of a circle to which the triangle abc is added 

in order to produce a sector —here Leonardo only briefly suggests “add the triangle”. The second 

sketch shows the sector (seen as a segment combined with a triangle). which should be divided into 
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smaller sectors (ghik) before one separates the angles of the sectors from each other in “such a way 

that the space between the vertices of these angles becomes equal to flattened bases of the sectors.” 

The next step (shown in the third figure from the top right  in Figure 9) consists of adding to the 

sectors of the third figure rstv the same number of identical sectors—and therefore having the area 

equal to their area—to complete the quadrilateral nmop.  Once the quadrilateral is completed and its 

area is calculated, one should remove one half of it (that means that the added sectors are now 

removed) to get an area equal to the area of the sector (which thus will be “squared”). Finally, when 

one removes the part equal to the triangle abc, the remaining part will be a “squared segment of a 

circle the curved side of which has been straightened by the movement on the line edf”. According to 

his final note, Da Vinci considered this method as the “only correct rule to give a quadrature of a part 

of a circle which is less than its half” (Figure 10) (We use quotes translated from the above French 

version (Da Vinci, 1888). 

 

 

Figure 9: Figures from Da Vinci 1888, Manuscript E, folio 25 recto (upper part) 

Our English rendering of this text is based on the translations of Ch. Ravaisson-Mollien and V.P. 

Zubov (1935, 1955). It reads as follows: 

Quadrature of the sector lv. Add the triangle abc16 to the part bcd and divide it into sectors, as 

is shown in the second figure ghik; then separate the angles of the sectors from each other in 

such a way that the space between the vertices of these angles become equal to flattened bases 

of the sectors. After that add to the sectors of the third figure rstv the same number of sectors, 

that is, the area equivalent to their [area], and you will complete a quadrilateral, which is 

nmop. When the quadrilateral of the 4th figure is completed, remove one half of it, and you 

will remove the added sectors; the remaining part will be equal to the second figure ghik, 

which remains square. Then you remove from this square what is needed to make it equal to 

the triangle of the first figure abc, and what remains to you will be the portion of the circle 

made square, that is, the part bcd, of which the curved side was placed with the movement 

that [you] made on the line edf. This is the only and correct rule to give the quadrature of each 

 
16 In his translation Ravaisson-Mollien writes “abe” instead of “abc”. 
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part of a circle, which is smaller than half-circle, for which no science is worth if it is not 

[done] by borrowing and by the movement discussed above, etc.   

Then comes Folio 25 (recto) discussing a quadrature of a circle (actually, a fourth of it). Da Vinci’s 

figures shown in Figure 9 include a quarter of a circle (the sector in the upper part of Figure 9) 

subdivided into two parts, a triangle ABC (mentioned in Leonardo’s words ‘add the triangle’) and 

the segment BCD shown in Figure 10. The last folio of the series, 26r, provides yet another example 

of a quadrature of a curved surface, where again we find the same method based on division of a 

sector into smaller sectors, followed by a subsequent transformation into a rectangular shape (Figures 

11–14). 

 

Figure 10: Figure shown in the upper part of Figure 9 redrawn by the authors 

 

Figure 11: Figures from Da Vinci 1888, Manuscript E, folio 26 recto (lower part) 
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Figure 12: Upper part of the diagram shown in Figure 11 (reconstructed by the authors) 

 

Figure 13: Middle part of the diagram shown in Figure 11 (reconstructed by the authors)  

 

Figure 14: Lower part of the diagram shown in Figure 11 (reconstructed by the authors) 



 237 

On the back side of the same folio (26v), Da Vinci provides a set of rules that can be used to calculate 

the area of a circle; these rules read as follows:  

De quadratura circulu 

Moitié contre moitié. — Entier — Multiplie la moitié de la circonférence du cercle par la 

moitié de son diamètre, et le résultat sera cette quadrature de cercle. Autre manière : Entier 

contre quart. — Multiplie toute la circonférence d'un cercle contre le quart de son diamètre, 

et tu auras la quadrature de ce cercle. Autre manière : Quart contre entier. — Multiplie le quart 

de la circonférence d'un cercle contre tout son diamètre, et ce qui en résulte sera la quadrature 

de ce cercle. Autre manière : Tout contre tout. — Multiplie toute la circonférence avec tout 

son diamètre, et du résultat ôte les [3/4?], \\ le reste sera ce que tu demandais. Autre manière 

: Moitié contre le tout. — Multiplie la moitié de la circonférence avec tout le diamètre, ou la 

moitié du diamètre avec toute la circonférence, et du résultat enlève la moitié; le reste sera un 

carré égal audit cercle. Tout contre le quart. —Multiplie le quart du diamètre d'un cercle contre 

toute la circonférence, et le résultat sera quadrature de son cercle.  

Our English translation of this excerpt reads:  

On quadrature of circle  

Half against half. — Entire [figure] — Multiply half of the circumference of the circle by half 

of its diameter, and the result will be this quadrature of the circle. Another way: Whole versus 

quarter. — Multiply the entire circumference of a circle by a quarter of its diameter, and you 

will have the quadrature of this circle. Another way: Quarter against whole. — Multiply a 

quarter of the circumference of a circle by its entire diameter, and the result will be the 

squaring of that circle. Another way: Entire [one multiplied] by entire [one]. — Multiply the  

entire circumference  by its entire diameter, and from the result take away its [three fourth?], 

\\ the rest will be what you asked for. Another way: Half against the whole. — Multiply the 

half of the circumference by the whole diameter, or half of the diameter by the whole 

circumference, and from the result subtract one half; the remainder will be a square equal to 

said circle. All against the quarter. —Multiply a quarter of the diameter of a circle by the 

entire circumference, and the result will be the quadrature of its circle. 

Discussion  

In our paper, we conducted an analysis of the process of calculation of the area of a circle as illustrated 

in works of Leonardo da Vinci. Our choice of sources was based on references to Leonardo Da 

Vinci’s works in modern literature, such as M. Baron’s (1969) book on the history of calculus and P. 

Beckmann’s History of Pi (Beckmann, 1971/1976), as well as in online resources (e.g., the Cut-the-

Knot educational website created by Alexander Bogomolny, 1948–2018).17 Our investigation was 

prompted by an analysis of the methods found in present-day textbooks whose authors apparently 

were focused on the didactical aspects of the infinitesimal methods based on intuitive, dynamic, and 

visual representations. It should be emphasized that the context of the work conducted by 

mathematicians of the past was of a different nature. They arguably focused on such problems as, for 

instance, the quadrature of the circle (Nicholas of Cusa, 1401–1464) or calculation of the volumes of 

the wine barrels (Johannes Kepler, 1571–1630) without being particularly concerned with didactical 

aspects of their methods. The need of calculation of the area of a circle arose from the contexts often 

dealing with issues related to solutions of more complex problems. As we showed in our earlier 

 
17 See the website http://cut-the-knot.org/. 
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publication (Freiman & Volkov, 2022), when one deals with textbooks specifically designed for 

learning, such as Alexis Claude Clairaut’s (1713–1765) Elémens de Géometrie of 1741 (reprinted in  

1830)18￼ or geometry textbooks of the 19th and 20th centuries, it is rather obvious that the task of 

calculation of the area of a circle became essentially a didactical issue related to the problem of 

introduction of the infinitesimal methods and, in particular, of the concept of infinitely small entities. 

While it can be argued that the division of a circle into a number of equal sectors and their further 

rearrangement thus producing “teeth-like” diagrams in school textbooks was done mainly for the sake 

of visualization, Da Vinci’s drawings seem to have been directly related to his concepts of infinitely 

small and infinitely large entities. 

Interestingly enough, in the case of the area of the circle the epistemic issue of dealing with infinity 

interacts with the demand for visualization (in particular, with the need of using diagrams in 

textbooks) as well as with the use of induction (based on intuitive approach to infinitely small and 

large entities) and of approximations (often dictated by practical and not only by theoretical 

considerations). For instance, when one looks into Da Vinci’s notes, a focus on drawings is apparent. 

For example, in Figure 3, two sectors of the circle are divided into smaller sectors and then appears a 

shape composed of these small sectors now looking like triangles. Then come two entirely abstract 

representations of a rectangle divided into two halves, one of which is shaded. Then again, a rectangle 

composed of “triangulated sectors” is shown followed by a very different drawing.We see a segment 

of a circle with an added triangle thus transforming it into a sector. What is even more interesting, 

there is a straight line, which seems to be equal to the arc of this sector.The arc of the sector is 

subdivided into equal parts which, when the arc of the sector is straightened, become equal segments 

of a straight line.  

Using Ravaisson-Mollien’s and Zubov’s transcriptions and translations, we analyzed Leonardo’s 

notes from another manuscript (Manuscript E), which has similar drawings. We found there two 

different interpretations of the method of “transforming a circumference into a piece of straight line” 

(with the length equal to the circumference). One of these interpretations was related to the category 

of methods based on the idea of “unfolding a circle” with sectors becoming a “teeth-like” rows of 

matching triangles. Methods of this category can be found in ancient and modern sources, such as, 

for example, in the diagram constructed by Casselman (2012) or in the one found in Beckmann 

(1971/1976). The other was based on the idea of “cutting out the sectors of a circle” (the sectors thus 

had to be moved and rearranged), when even the notion of “being equal” seemed to be sacrificed to 

the goal of making a new arrangement of parts fitting into a rectangular shape, see, for example, 

Lardner (1835, p. 114), Lardner (1840, p. 101), and Willis (1922). The latter approach can also be 

observed in Da Vinci’s construction that reflected his vision of dynamically transforming shapes 

which, he claimed, would have an area “equal” to the area of a rectilinear figure.  Hence, in connection 

to our didactical focus, we notice in Da Vinci’s works certain ideas looking similar to modern 

didactical views of geometry as intuitive, visual, and dynamic discipline that can be studied with the 

help of visual representations and manipulations (vizualizing, cutting, transforming, and re-shaping) 

thus expecting to help learners to gain deeper understanding of the concept of the area of rectilinear 

 
18 On Clairaut’s didactical ideas see, for example, Sander 1982 and Glaeser 1983.  
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and curvilinear figures. But one can also question the limitations of these methods when it comes to 

dealing with more abstract concepts of infinitesimal processes.        

We argue that the division of a circle into a number of equal sectors and their further rearrangement 

thus producing “teeth-like” diagrams in school textbooks was done mainly for the sake of 

visualization; however, a number of minor differences between variants of this procedure can be 

identified. Furthermore, there is another aspect that deserves a deeper reflection as far as the visual 

part of the process is concerned. It is related to the number of sectors into which the circle was 

supposed to be dissected. More specifically, there existed two patterns that can be identified, the first 

one was based on a regular hexagon inscribed in the circle and then having its sides doubled thus 

generating the series of regular polygons with 12, 24, 48,…sides, while the second one featured 

regular polygons with the numbers of sides equal to powers of 2 (4, 8, 16…) and beginning with an 

inscribed square. Both visual representations were used to convince the reader (i.e., the learner) that 

the area of a given circle can indeed be calculated via an approximation by using polygons.  

While the idea of dividing the circle into sectors is present in all models, there are differences in terms 

of their number as well as in their pictorial representations. For instance, some models provide 

illustration of the whole circle divided into equal sectors (Earl, 1894) while some others present a 

division of a half of a circle (Palmer, 1919), or show only a part of the sectors (Willis, 1922). There 

are also some less straightforward representations. For example, the model suggested in Henrici and 

Treutlein (1897) shows division of one half of a circle into three sectors and the other half into six 

sectors. When representing the result of a rearrangement, some models show the final result of only 

one transformation (Earl, 1894; Hall & Stevens, 1921; Palmer, 1919), or even leave the “matching” 

incomplete (like in Lardner, 1835, 1840). In his books, Lardner shows two rows of “teeth” close to 

each other but are not stuck together. Other authors prefer to show two consecutive transformations 

(like Henrici and Treutlein’s (1897) model with 3 and 6 pieces; or Willis’s (1922) one showing a part 

of sectors put together next to a completed rectangle). This variety of the representations of one and 

the same model might have had an impact on its use (in terms of instrumentation and of its didactical 

efficiency), which also deserves further investigation. 

The division of the circle was followed by a rearrangement part arguably based on the assumption 

that the operations of division, decomposition, and re-composition of a given geometrical figure do 

not change its area. Several models that we discussed above reflect this dynamic process. At some 

point, the circle itself was treated (or should one say “defined”?) as a polygon with an infinite number 

of sides. This treatment immediately led to an even more complex (and complicated) issue, which 

remains mathematically and didactically challenging until now: How to deal with infinity? Some 

sources that we analyzed provided an explanation employing the concept of a “sufficiently large” 

number of sectors and claiming that the shape that could be constructed using the inscribed rectilinear 

figures “looks like” a triangle, or a rectangle, or a parallelogram. Others added the word 

“approximately” to the description of this visualization. Finally, a number of authors introduced some 

dynamic aspects into the process, explicitly or implicitly pointing at a possibility of increasing the 

number of sectors and, consequentially, making it intuitively clear that the area of the rearranged 

shape of the circle becomes closer and closer to that of a triangle, or a rectangle, or a parallelogram 

for which it was known how to calculate their areas. This dynamic process allowed for further 

manipulations with the formulas for the area of a triangle (or rectangle, or parallelogram) and, finally, 
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for advancing conjectures concerning the formula of the area of a circle (most often based upon the 

previously proven formula for the circumference). 

Conclusions 

While considering geometry as a complex activity embracing various processes of interaction 

between practical knowledge (e.g., measuring) and its theoretical codification (e.g., the Euclidean 

deductive system), we are inclined to see in the use of the “rearrangement method” an attempt to 

introduce a two-fold procedure explaining to the learners how to calculate the area of a circle and, at 

the same time, offering a plausible reasoning strategy explaining why this formula works. While 

considering it as an “instrumental activity” (implying both signs and tools) from its very beginnings, 

Richard et al. (2019, p. 143) reflected on the complexity of distinguishing between mathematics as a 

science and mathematics as “mathematical thought” applied in the context of particular situations, 

tasks, or activities. Richard et al. (2019) referred to Kuzniak and Richard’s (2014) definition of 

mathematical work as a “progressively constructed process of bridging the epistemological and the 

cognitive aspects in accordance with three yet intertwined genetic developments as the semiotic, 

instrumental and discursive geneses” to introduce their model of MWS (“Mathematical Working 

Space”) allowing to “report on mathematical activity, potential or real, during problem solving or 

mathematical tasks” (Richard et al., 2019, p. 144).  

From the historico-didactical perspective, our analysis allows for some preliminary observations. 

Firstly, while it appears to be difficult, or even impossible, to make direct connections between 

mathematicians’ work prior to the 18th century and didactical innovations of later periods, some of 

the issues that mathematicians were dealing with certainly merit attentive look of modern educators. 

For instance, da Vinci’s idea that the angles of the sectors can be separated from each other in such a 

way that the space between the vertices of these angles become equal to flattened bases of the sectors 

is resonating with that of transforming rearranged sectors into configurations where sectors are 

approximated with triangles, and, when put together, form rectilinear shapes (larger triangles, 

rectangles, or parallelograms). The idea of Nicholas of Cusa (Cusanus) that the area of the circle may 

be found by the same means as by that employed for any other polygon, that is, by dividing it up into 

a number (in this case, an infinite number) of triangles, was also fruitful in terms of the treatment of 

“teeth-like” representations in later (and even very recent) sources.19 Johannes Kepler’s work, besides 

following Cusanus’ method of “indivisibles,” provides an insight into the procedure that points at 

approximation as a way of approaching the circle by polygons with a large (or even infinite) number 

of sides.  

Secondly, when exploring references to earlier works by Cusanus, da Vinci, and Kepler, we found 

that modern authors (e.g., Boyer (1959(, Baron (1969), and Beckmann (1971/1976) seem to add 

details, which were not found in the cited works. Indeed, neither Cusanus, nor Kepler explicitly 

discussed the “rearrangement” of sectors.   

Thirdly, despite a seeming similarity of the ways in which the versions of the rearrangement method 

were described in the 19th and in the early 20th century sources (see brief discussion in Freiman & 

Volkov, 2022)), we noticed certain substantial differences in representations that need to be reflected 

 
19 For discussions of Cusanus’ quadrature see Uebinger 1895, 1896, 1897; Wertz 2001; Nicolle 1996, 2001, 2020. 
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upon from the teaching and learning perspective (e.g., number of sectors into which the circle is 

divided and which seems to be connected to a shape of a polygon inscribed in a circle; the 

representation (definition) of a circle itself as a polygon with an infinite number of sides; type of the 

rearrangement employed; or even more complex, how should we deal with the infinity 

(approximation versus becoming equal), etc.). In this respect, going deeper into earlier sources (such 

as Da Vinci’s writings) can provide rich material for a historico-genetic analysis of the methods 

involving the concepts of infinitely large and infinitely small entities that was the main goal of this 

paper, which was conducted within the framework of our ongoing investigation on the historical roots 

of modern didactical methods.  
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A new method for constructing Penrose-like tilings by using 

traditional Iranian patterns 

Mohammad Hossein Eslampanah1  and Payam Seraji2 

 

After a short survey on different ideas about the connections between Penrose tiling and some 

traditional Iranian patterns, which are based on decagon, a new method for constructing Penrose-

like tilings is obtained. In this method one uses only four types of traditional Persian motifs. We will 

also prove that this tiling has some characteristics similar to Penrose tilings. 

Keywords: Penrose tiling, Kond-e-dah gereh patterns, Quasicrystal, Non-periodic tilings. 

 

Introduction 

In 1974, Roger Penrose, a prominent British mathematician and physicist, introduced a new kind of 

tilings (Penrose, 1974) whose characteristics were different from the known tilings. They had “global 

fivefold symmetry” which means that there is a point that if we rotate the tilings in multiples of  
2𝜋

5
 

around, the tilings would fit with the original one, and would be non-periodic, i.e., there is no vector 

that if we transform the tilings by that vector, the new tilings would fit with the original one. One 

famous example of this tiling, which only uses two tiles, is known as “Kite” and “Dart” (see Figure 

1). Figure 2 is another example of this kind of tiling, which uses two tiles, known as “fat rhombus” 

and “tin rhombus” (for more information, see Penrose, 1974). 

 

Figure 1: Penrose’s Kite and Dart tiling  
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Figure 2: Penrose thin and fat rhombus tiling  

A few years later, physicists discovered some structures, which are called “quasicrystal.” They found 

that relevant mathematical models for describing (some of) these structures are Penrose tilings (see 

Senechal, 2006).  

In recent years, many scholars have suggested similarities and (possible) relations between Penrose 

tilings and some traditional Iranian-Islamic tilings, which are based on the regular decagon. Perhaps 

the most famous article on this subject was written by Peter Lu and Paul Steinhart (Lu & Steinhart, 

2007), which even attracted much discourse in social media around the world. In this article, they 

introduce a set of five tiles (“Gireh” tiles). They show that these tiles have a self-similarity like 

property, i.e., we can construct a similar tile with a larger scale using some arrangements of tiles with 

smaller scales, a characteristic that holds also for Penrose tiles. 

Historical evidence for using these tiles is their appearance in a pattern of Topkapi scroll3 (Lu & 

Steinhart, 2007). Lu and Steinhart’s main example is a tiling in Darb-e-Imam shrine (15 century, 

Isfahan, Iran). They claimed that:  

by the 15th century, the tessellation approach [using Gireh tiles] was combined with self-similar 

transformations to construct nearly perfect quasi-crystalline Penrose patterns, five centuries 

before their discovery in the West (Lu & Steinhart, 2007, p.1109).  

Their claim has been criticized by some authors (for example Cromwell, 2009), but, whether all their 

claims are justified or not, it is clear that there are some relations between these two types of tilings 

and we can construct tilings with characteristics like Penrose tilings by using traditional Iranian-

Islamic patterns (hereafter, for simplicity, we use the term “traditional patterns” instead of “traditional 

Iranian-Islamic patterns”). 

Another method for transforming a Penrose tiling to a tiling with traditional patterns is presented by 

Rigby (2006). He divides Penrose “Kite” and “Dart” by traditional patterns as it is shown in Figure 

3. Then he shows that matching rules, which should be regarded for constructing Penrose tilings are 

 
3 An architectural scroll from 15 century, now is held in Topkapi museum, Istanbul, Turkey. 
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compatible with this subdivision and the result will be a Penrose like tiling, which is constructed by 

using a set of five traditional motifs (Figure 4). 

 

Figure 3: Dividing Kite and Dart by Kond-e-Dah motifs  

 

Figure 4: Transformation of Penrose’s “Kite” and “Dart” tiling to a tiling by traditional motifs (from 

Rigby, 2006) 

Subdivisions of Figure 6 can be seen in many old tilings in Iran, for example in Darb-e-Imam (Figure 

5), or ChaharBagh school (Isfahan, 17 century, Figure 6). 

 

Figure 5: Darbe-e-Imam shrine (photo by the authors) 
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Figure 6: Isfahan’s Chaharbagh school (photo by authors) 

These motifs are very common in Persian architecture and their traditional names are demonstrated 

in Figure 7. This Figure also shows how one can naturally draw these motifs by using a regular 

decagon (these are drawn by a master of traditional Persian architecture, Gh. Aghaebrahimiyan, 

(Eslampanah, 1996). Using these Figures, one can easily observe all the geometrical characteristics 

of these motifs. We only mention the followings:  

1) “Torang” is exactly equal to Penrose’s “Kite” 

2) Sides of all these shapes are equal or their proportions are one of the golden ratios (= 
√5±1

2
). and: 

3) All angles are multiples of 36 degrees.  

 

Figure 7: Persian names for traditional motifs of Kon-e-Dah patterns and a method for drawing them 

using regular decagon (from Esslampanah, 1996) 
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In what follows, we present a new method for transforming a Penrose tiling to a tiling which uses 

only four tiles of the above set (a part of this tiling can be seen in Figure 29). First step is to prove the 

following lemma: 

Lemma 1) Any Penrose tiling by thin and fat rhombuses can be covered by two decagonal-shape 

tiles (which we call “type A” and “type B” decagons, Figures 8 and 9), if these tiles are allowed to 

have overlap in a thin rhombus or in an “Almond six”4 (Figure 10). 

 

 

Figure 8: Decagon type A 

 

Figure 9: Decagon type B 

 

Figure 10: Overlap in an Almond-six 

Proof: One method for describing local structure of Penrose tiling is considering the “matching rules.” 

Figure 11 shows one example which is proposed by Conway (Grunbaum & Shefard, 1990): 

 
4 Traditional name for this shape according to some architect masters 
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Figure 11: Matching rules for thin and fat rhombuses 

Tiles should be adjacent in a way that red strips connect to each other and also blue strips connect to 

each other. By considering this rule and also using different ways in which we can fill 360 degrees 

with these tiles, it can be seen that there are only 8 possible ways for covering all 360 degrees around 

a point, by these two tiles (Figure 12). 

 

 

Figure 12: Eight possible patterns around a point 

By considering each of these eight cases, one can see that using the matching rules, each central point 

falls inside, or on the boundaries of a decagon of type A or B. For example, in the following case 

(Figure 13), the only way for filling the points A,B,…,E is shown in Figure14, and the central point 

is inside a decagon of type A. 

 

Figure 13: Decagon of type A 
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Figure 14: Decagon of type B 

If two decagons have some overlap, then the path on the boundary of each decagon, which is inside 

another one, is a sequence of segments with equal length and each one makes an angle of 144 degrees 

with the next one (because inner angles of a decagon are 144 degrees). According to the structure of 

each type A and type B decagons, we have the following 3 possibilities (Figure 15). 

 

Figure 15: Three types of intersection between decagons 

In each case, the overlapping space is a thin rhombus or Almond-six, which completes the proof.∎ 

Now, we add to each of types A and type B decagons, some new lines, which fill these decagons with 

traditional patterns, in addition to some extra pieces on the sides (Figures 16 and 17).  

 

Figure 16: Filling decagons of type A using traditional motives 

 

Figure 17: Filling decagons of type A using traditional motives 
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Justification of this filling is a simple exercise in geometry, and we leave this task to the reader. It 

can be easily checked that in all these three cases of overlapping spaces, traditional patterns fit on 

each other and there is no inconsistency between them.  

Lemma 2) In all cases for which the edges of decagons of types A and B coincide, lines of traditional 

patterns join together and form a “Panj” (regular pentagon). 

Proof: Two edges of a type A decagon cannot coincide in a Penrose tiling, because, as Figure 18 

shows, it is impossible to fill around the point A in a way that matching rules work. 

 

Figure 18: First type of impossible matching 

By a similar reason, two decagons of types A and B cannot coincide in an edge. The only remaining 

case is that two decagons of type B have a common edge (Figure 19).  

 

Figure 19: Legal matching of two decagons 

It can easily be checked that in all possible ways for filling around the end points of the common 

edge, lines of traditional patterns match together and form a regular pentagon (Figures 20 and 21): 

 

Figure 20: Completing pattern of Figure 19 
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Figure 21: Completion of traditional patterns in intersections 

By combining the two previous lemmas, we can transform any Penrose tiling with thin and fat 

rhombuses to a tiling by Islamic motifs (i.e., Sormedan, Panj, Tabl, and Toranj); it is enough to cover 

Penrose tilings with decagons of types A and B, and then draw the traditional pattern on each of 

decagons. To prove that the resulting tiling is not periodic, we need another lemma: 

Lemma 3) If we rotate a periodic tiling with a multiple of  
2𝜋

5
     with respect to an arbitrary point,  

𝑂)  then we will have mismatches with the original pattern in infinitely many points. 

Proof: The tiling is periodic, so by definition of periodicity (Grunbaum & Shefard, 1990), there are 

two non-parallel vectors �⃗�    and  �⃗⃗�    such if we transform the tiling by each of these vectors, the 

resulting tiling will match with the original one. These two vectors naturally define a coordinate 

system in which the axes are lines crossing 𝑂  and parallel with �⃗⃗�    and �⃗�  . In this coordinate system 

for finding coordinates of a point 𝐴  , we draw lines from 𝐴   parallel with axes. Intersection points 

of these lines and the axes determine coordinates (“length” and “height”) of 𝐴 (Figure 22). Let length 

of unit on the x-axis to be |�⃗⃗�|. 

 

Figure 22: Choosing the coordinate system 

The vectors  �⃗⃗�    and  �⃗�   naturally define a parallelogram region in the tiling and the whole tiling can 

be considered as a tessellation of this single region. We call this parallelogram 𝑃.  Let 0 to be the 

lengths of all endpoints of line segments (=verteces) of the tiling, which are in 𝑃. .  Then length of all 

verteces in the tiling modula 1 are equal to  𝑎1   or …or 𝑎𝑛 .  Let 𝑃′ = 𝑅
𝑂,
2𝜋

5

(𝑃) (result of rotating 𝑃   

with 72 degrees centered at  𝑂). Assume that there is a parallelogram region 𝑃 such that 𝑃′ =
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𝑅
𝑂,
2𝜋

5

(𝑃) fits on the original tiling. Notice that 𝑢′⃗⃗⃗⃗ = 𝑅
𝑂,
2𝜋

5

(�⃗⃗�) is a transformational symmetry for the 

rotated tiling. Then, if  0≤ 𝑏1 < ⋯ < 𝑏𝑚 are lengths of vertexes (of the original tiling), which are in 

𝑃′, then set of length of all vertexes of the original tiling should be 𝐿 = {𝑏𝑖 + 𝑘𝑐𝑜𝑠(
2𝜋

5
) ∶ 𝑘 ∈ ℤ, 1 ≤

𝑖 ≤ 𝑚} (because the projection of 𝑢′on the x-axis has length 𝑐𝑜𝑠 (
2𝜋

5
) and if we transform 𝑃′ by 𝑘𝑢′, 

length of vertexes, then it adds by k𝑐𝑜𝑠 (
2𝜋

5
)). But 𝑐𝑜𝑠 (

2𝜋

5
) =

√5−1

4
  is an irrational number. Then 

𝐿 (𝑚𝑜𝑑 1) is a dense subset in the interval [0,1] and it contradicts our previous result (that this set is 

finite and equal to {𝑎1,…𝑎𝑛}). Then each parallelogram region 𝑃,  𝑃′ = 𝑅
𝑂,
2𝜋

5

(𝑃) has at least one 

mismatch with the original tiling, so we have infinitely many mismatches. 

Lemma 4) After covering a thin and fat rhombus Penrose tiling with decagons of types A and B, we 

can put traditional patterns (Figures 16 and 17) on them such that the resulting tiling with the 

traditional motifs, has a global fivefold symmetry except on one decagon which is in the center of the 

tiling.  

Proof: Penrose tilings have a global fivefold symmetry. So, if a decagon appears in the tiling (except 

the central tiling), there should be four more decagons (of the same type), which are rotations of that 

decagon respect to the center and with an angle of 72 degrees (Figure 23). 

 

Figure 23: Rotations of the main motif  

Case 1) If a decagon is of type A, then if we rotate a type A decagon around its center with a multiple 

of 72 degrees, traditional patterns, which are in five thin rhombuses in sides of decagon (blue tiles in 

Figure 17) do not change. Then we can choose traditional patterns in a way that a fivefold symmetry 

holds in Figure 23. 

Case 2) If a decagon is of type B, then we can put traditional patterns in this decagon in two ways, 

which are the mirror reflection of each other (Figure 24): 
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Figure 24: Mirror reflections 

So, choosing each case does not change the traditional patterns in parts that may be in overlapping 

region (i.e., a thin rhombus or an Almond-six) with adjacent tiles, then by choosing one of them and 

then rotating that by multiples of 72 degrees, we can keep the fivefold symmetry again.∎ 

 

Figure 25: Fivefold symmetry of a traditional pattern except the central decagon 

If this tiling was periodic, then by Lemma 3, we should have mismatches in infinitely many points. 

But this tiling has mismatches only in a finite number of points (vertices of the patterns inside the 

central decagon). Then we have proved the following theorem: 

Theorem1) The tilings with traditional motifs (described above) are not periodic. 

In Figure 26, one can see a section of this tiling without the background: 

 

Figure 26: Tiling resulted by our method without background 
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Summary and conclusion 

As our result (and also results of Lu (2007), Rigby (2006) and others) shows, there are some 

relationships between Penrose tilings and Iranian-Islamic tiling based on regular decagon, which are 

surprising and wonderful. However, we find no evidence that non-periodicity has been noticed by the 

medieval artists who created these tilings. It is true that we can construct such structures by traditional 

motifs, but in the long tradition of Iranian-Islamic art, symmetry was always a major interest among 

the architectures and non-periodicity has not been interesting for them. We think that what has been 

interesting for designers of patterns like Darb-e-Imam, was the self-similarity aspect; a fixed set of 

tiles can create two similar tilings; one in a smaller scale and another in a larger scale, and maybe this 

fact has had a symbolic interpretation for the designers. 

Another issue that is maintained in Lu and Steinhart (2007) is that a complex pattern like Darb-e-

Imam has not been designed directly by compass and straightedge, but by tessellation of the, so-

called, Girih tiles. We think it is true because the first author in his collaboration with master of 

traditional architecture, Mr. Gh. Aghaebrahimiyan in 1980s (Eslampanah, 1996), learned a method 

for constructing these patterns, which uses the tessellation approach, instead of direct drawing by 

compass and straightedge. This method is described as follows: 

All motifs that are used in a kind of patterns based on regular decagons (in traditional terminology 

“Kond-e-Dah”) can be drawn inside a regular decagon (Figure 10) and then the whole pattern can be 

constructed by tessellation of this motifs around the central decagon. 

This fact and the existence of a large variety of different tessellations for these tiles shows that the 

traditional artists had discovered, in addition to self-similarity properties of these tiles, their 

interesting ability to match tilings together in many different ways and make different tilings, 

including some tilings which have no obvious periodic pattern and look like non-periodic tilling.  

Some examples, all from Isfahan, can be seen in Figures 30–33. 

 

Figure 27: Jāmeh mosque, Isfahan (photo by authors) 
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Figure 28: Nimavard school, Isfahan (photo by authors) 

 

Figure 29: Mohammad Jafar Abadei mosque, Isfahan (photo by authors) 

 

Figure 30: Jāmeh mosque, Isfahan (photo by authors) 
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John Keats’s “ode on a Grecian urn” in aesthetic geometry with 

inversion 

Revolt Pimenov1 

 

This article is about a new understanding of inversion or circle symmetry. We show pictures and 

visual art designed in software and write about using them in mathematics and teaching mathematics. 

We also present them as a basis for some methods and questions of interest for interdisciplinary 

education and research. In the spirit of STEM with art (STEAM), we give some examples of practical 

work conducted in school, as part of the Aesthetic Computer Laboratory. Mathematically, we cover 

some models of non-Euclidean geometries, based on circles, and relate them to emerging biological 

forms in these visual art constructions. 

Keywords: Aesthetic, geometry, symmetry, laws of inversion, interdisciplinarity. 

 

Introduction 

“Beauty is truth, truth beauty, – that is all [we] know on earth, and all [we] need to know.” (J. 

Keats, Ode on a Grecian Urn)  

So, the poet said, and here we will interpret his words geometrically with algorithms, illustrations, 

and theorems. 

The material we offer combines aesthetics, geometry, and topics of higher mathematics. We believe 

that this material can be used (and has actually been used) in work with children and students in 

schools. What is aesthetic geometry and how can we use it for mathematics and teaching 

mathematics? It is a unified approach to geometry based on the symmetries of circles. We all know 

that a circle is the most symmetrical figure, but there is also an aspect of symmetry about the circle, 

which we can define using simple and non-traditional methods that can lead to a variety of 

opportunities.  

We will start by introducing the aesthetic part, paintings and animations or visual art, and then explain 

the basics of geometry and pedagogical applications. 

Paintings 

All pictures in this section were made in a graphic editor, CorelDraw. We used special macros that 

implement the geometry of the circles. We have countless images made in this way but show the first 

three to explain the variety of emerging art forms, followed by the fourth, which clarifies their 

geometrical essence. 

 
1Alferov Physics and Technology Lyceum, Sankt Peterburg, Russia 

Revolt Pimenov: revoltp33@gmail.com  
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Figure 1: “Orchestra in the air” 

 

Figure 2: “The face of the grotesque” 

 

 

Figure 3: “The bird of Galactic and Peace” 
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The unusual, two-centered baroque spiral (Figure 4) was obtained by the composition of inversions. 

From the parts of such spirals, the first three drawings were created. From a mathematical point of 

view, this spiral is an excellent introduction to group theory and illustrates the concept of a limit. 

 

Figure 4: “Baroque spiral” 

Visual art 

Visual art presented in the previous section consists of endless combinations of graphical components 

whose construction follows the language of mathematics. The laws of inversion create an 

environment in which each change is harmonious. In this environment, we insert objects, and they 

move without repeating and without ending, remaining harmonious. Time and rhythm are part of this 

harmony. We can modify pictures by changing colors and moving objects, producing an effect similar 

to the movement in a force field. It is an example of the intersection of aesthetic geometry with 

physics, which we can use to model the movement of planets in the Solar System. While the graphics 

are dynamic, they constantly change and evolve, the examples we give come from frozen frames (you 

can download a program for viewing visual art by following the references in the last section). The 

composition of circles’ symmetries is the foundation of all pictures.  

I used a special program, DodecaLook (Dodeca Meditation, n.d.), for a demonstration of this art. The 

questions that I ask myself and pose to the readers are: Why are the forms that are created by the laws 

of circles’ geometry beautiful? And why are these forms often zoomorphic (e.g., Figure 5)? I did not 

intend to create them in such a way, such results stem from the inner properties of circles’ geometry, 

our aesthetic sense, and biology. These create an opportunity not only for teaching but also for 

research. 
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Figure 5: “Flying knot” 

In some cases, the program does not create endless pictures in the time combination of images, but 

knots (Figure 6), and there is an interesting theorem about this phenomenon. 

 

 
Figure 6: “Cosmos” 
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Figure 7: “Mourning” 

The software DodecaLook is good for developing an aesthetic sense in mathematics students, and for 

playing with colours and forms. 

Mathematics applications  

In this section, we show topics of mathematics that are convenient to study with inversion, or, as we 

say, with “Aesthetic Geometry.” 

 

Figure 8: Aesthetic geometry connections to other mathematical topics 

The ideas expressed in this section, are close to Friedrich Bachmann’s (1973) book, “Building 

geometry from the mirror concept.” Symmetry considered in this book is symmetry about a straight 

line, while we consider symmetry about circles, which creates amazing new possibilities. The next 

sub-section provides the main idea about symmetry relative to circles and about modelling non-

Euclidean geometries. 
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Definition of inversion with two pairs of symmetrical points. Pairs of the pairs 

I recall the classic definitions of a circle. The first definition uses a formula; it states: “If we have a 

circle S with center O and radius r, and point X, then a point obtained after inversion about S (let’s 

denote it S(X)) is the point Y that lies on the beam OX, such that |OX|∙|OY|=r2.”  

The second definition is more geometrical, it states: “Let X is outside of S, then create two tangents 

on S from X, and create a chord through the points of their contact with the circle. Now pass the line 

through O and X and name the point of intersection of the chord and this line, Y=S(X). If X is inside 

S, we do this construction in reverse order; construct a line OX and a chord through X that is 

orthogonal to this line, and a pair of tangents on S in the points of intersection of the chord and S. 

The point of intersection of these tangents will be image of X, S(X). This defines a symmetry of a 

point about circle S which is involution: S(S(X))=X. The inversion transforms circles to circles or 

lines, and we say here that a line is the special case of a circle; the circle with an infinite radius! Now 

we can say that inversion is symmetry in the world of circles. 

These definitions of inversion have defect because in these definitions we use straight lines, centers 

of circles or distance between points, but the words “centers,” “straight lines,” and “distance” are not 

from the world of circles. They are not invariant under inversion. In the world of circles, we can only 

draw a circle through 3 points, make inversion and find points of intersection between circles. 

However, another definition and understanding of symmetries between circles exists, it is marvelous 

that such a definition is easy, easier than the classic definition, and easier than the definition of 

symmetries about line. The remarkable thing about this definition of inversion is that it only uses 

elements that are invariant under inversion! 

Let us have two pairs of symmetrical points: A and B are symmetrical under symmetry I, I(A)=B, 

and C and D are symmetrical about I, I(C)=D. In that case, as is well known, all 4 points must lie on 

one circle; it is the circle S (Figure 9). Let us then have some arbitrary point X and find a point 

symmetrical to it, point I(X). 

 

Figure 9: “New Definition of Symmetry” 
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For this we must do only two operations, we must draw one circle through X and the first pair of 

symmetrical points A and B, and another circle, through X, C, and D. The second point of intersection 

of these two new circles is a desired point, symmetrical to X under symmetry I (i.e., I(X)). Following 

this reasoning, perform analogous operations with points Y and Z. If the two new circles will tangent 

each other (have only one common point), as it is in point T, we say that T=I(T) and T is unmoved, 

fixed point under I. The set of all fixed points under I, is a fixed circle. We usually define the 

symmetry I, starting from this circle.  

After this, we can formulate nice theorems about points A, B, C, D after dividing them in pairs (as 

pointed out in ample literature), this definition and theorems could be a good introduction to group 

theory.   

Threecircler and a royal way to non-Euclidean geometries 

We call three intersecting circles, a “threecircler,” by analogy with a triangle. The pairs of points of 

these circles’ intersections define a symmetry; under it, each of the three pairs of points change place 

with each other. This definition is more geometrical than the definitions we presented in the previous 

section, but the result is the same. We named this symmetry, a “threecircler’s symmetry,” since it is 

very important for the circle geometry. There is no analogy in the geometry of a triangle for such a 

symmetry. But we have a good analogy for many other important properties of triangles and 

threecirclers where we think of a pair of points intersections as a triangle vertex and circles (or arc) 

as sides of a triangle. In fact, we have here an absolute geometry. 

Let us classify threecirclers by a property of division separation. We have three possibilities: one 

circle divides the pair of points of intersection of the two other circles, or the pair of points of 

intersection lies on one side of the third circle, or as an intermediate case, one point of intersection of 

the two circles lies on the third circle. Let us call threecirclers of the first type, “Riemann threecircler” 

(or “elliptic threecircler”); the second type, “Lobachevsky threecircler” (or “hyperbolic threecircler”); 

and the third type, “Euclidian threecircler.” We see the Riemann threecircler and the Lobachevsky 

threecircler in Figures 10 and 11. 

 

Figure 10: Riemann threecircler 
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Figure 11: Lobachevsky threecircler 

Let us consider the pairs of points of intersection as vertices and circles as sides of a threecircler. We 

can then define bisectors, altitudes, and medians in a threecircler in the same way as in a triangle 

using inversion and orthogonal circles as we use the symmetries about lines and orthogonal lines in 

Euclidean geometry. Furthermore, we can use angles between circles as we use angles between lines 

in Euclidean geometry. 

In Figure 12 we see the intermediate case when all three circles pass through one point. It is the 

Euclidean case, since after inversion with the center in this point, the threecircler transforms to a usual 

triangle and all properties of this triangle are given by the threecircler. From a threecircler, as an 

‘absolute triangle,’ we can easily develop an absolute geometry. Let us have some threecirclers and 

let us draw any circles through pairs of points of its intersections, we can call these circles as the 

“lines of absolute plane.” The pairs of points of intersections we call “points of absolute plane.” If 

two drawn circles intersect, we call the pair of points of intersection “absolute point,” as we did above.  

 

 

 

 

 

 

 

 

 

 

Figure 12: Euclidian threecircler 

The type of a threecircler will define the type of created plane: Riemann, Lobachevsky, or Euclidean. 

All needed theorems can be easily proven. We can model projective geometry also by using the circle 

geometry, as it is documented in the literature. 
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Pedagogical implications: Aesthetic computer lab 

There are many possibilities to use this approach in pedagogical applications for all ages. For 

example, we could engage with forms generated by such methods, we could teach some main 

mathematical ideas using such illustrations, or dance following the animations of the visual art. This 

topic is a good introduction to the theory of groups (e.g., for permutations, continuous, and Lie 

groups). 

The example in Figure 13 illustrates three mathematical concepts: limit, action group on a set, and 

composition of transformations. After we replace each point with a circle, we create a beautiful 

necklace, which turns a mathematics lesson into an aesthetics lesson. The first example is in Figure 

13, but any baroque spiral (Figure 4) is a more complex and a more beautiful example.  

 

Figure 13: Motion of points 

Below are two examples of practical work with students. 
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Figure 14: Student creation N#1 

Elements of aesthetic geometry were taught in the lessons and electives at the Alferov Physics and 

Technology Lyceum, in St-Petersburg. Figure 14 is an example of students’ work; when 

schoolchildren first learned about inversion, they drew a man and named him Kek. After an inversion, 

Kek danced, which was engaging for students and a clever use of play in mathematics classroom. 

Figure 15 is another example of student work made after some lessons in a computer lab; the work is 

in the spirit of STEM because creating such baroque spirals is an intersection between computer 

programming, geometry, and engineering. It is STEM with aesthetics!  Concepts such as “limit”, 

“algorithm,” and “action transformation on set,” are all involved in this work. 

 

Figure 15: STEM with aesthetics 

We have other examples of student work, one animation created in GeoGebra illustrates Steiner’s 

porism about circles tangent to two given circles. This was created without using straight lines or 

centers of circles. It helped the students develop a good understanding of the world of circles where 

lines and centers do not exist. 

We are also aware of a 4-year work in the school №96 “Eureka Development,” in Rostov-on-Don, 

about aesthetic geometry.  
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Interdisciplinarity 

In the previous sections, we have shown how aesthetic geometry can turn mathematics lessons into 

design or drawing lessons (Pimenov, n.d.). Now we will turn to the amazing and fascinating 

connection between aesthetic geometry and biology. When we create spirals like in Figure 5, we often 

see zoomorphic forms (e.g., Figure 4). If we start playing with the pieces of these spirals, both 

anthropomorphic forms and forms reminiscent of ancient art appear. Anthropomorphic forms also 

arise during the work of animation art. We cannot predict when and how such forms arise, but they 

do. This, we believe, suggests that biologists may also benefit from an introduction to aesthetic 

geometry. Perhaps this approach may shed new light on morphogenesis? What we refer to here 

applies not only to pedagogical activity, but also to research work. 

As an example, we show a drawing of Cheburashka, a character from a popular cartoon, that emerged 

from spirals. We think that the biological component of aesthetic geometry is noticeable in other 

drawings as well. We suggest that in the world of circle geometry, there exists an enigmatic 

connection between the inner, non-visual beauty of abstract mathematics, and the outer beauty of the 

world that surrounds us. This realization is very fruitful and can lead us to marvelous new results, as 

well, it can help to fortify the integrity of education and importance of teaching some mathematics 

concepts that are not strictly curriculum based. 

 

Figure 16: Cheburashka 
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Dancing mathematical processes: Stochastic and flow of motion dance 

Jorge Soto-Andrade1, Ami Shulman2 and May Garcés-Ocares1 

 

We explore, theoretically and experimentally, the interplay of mathematics and dance, focusing on 

dancing mathematical processes (instead of mathematical structures). We engage then in stochastic 

dance and flow of motion dance. Stochastic dance arises from the fact that randomness generates 

shapes and forms, and also movements, dance and even choreographies. We approach stochastic 

dance as an enactive and experiential analogue of stochastic music, where the poetry of a 

choreographic spatial/floor pattern is elicited by a random walk. We exemplify flow of motion dance 

as the choreographic enaction of arithmetical dynamical systems in the finite cyclic universe of the 

integers modulo m. We report and discuss the lived experience of a group of professional and amateur 

dancers in a recent pilot workshop, for whom dancing mathematical processes triggered a 

reconstruction of their relation to mathematics. 

Keywords: Stochastic dance, flow of motion dance, random walks, arithmetical dynamical systems, 

metaphor.  

 

Introduction 

We intend to explore, from a theoretical as well as an experimental way, one facet of the relationship 

between mathematics and art. More precisely, we focus on the interplay of mathematics and dance. 

For related work on mathematics, movement and dance, see Gerofsky (2013, 2016, 2017), Gerofsky 

and Ricketts (2014), Milner et al. (2019), and Pastena et al. (2013). 

We need, however, to first address the question:  What is mathematics about? 

The dominant ideology in mathematics (Bourbaki, 2006) says Structures!  

So, mathematics is the science of structures. But “Structure” is just a metaphor.  As usual, as the old 

Persian proverb reminds us: “The fish is the last one to see the water,” or the metaphor. 

We claim in a dissident vein, that mathematics is rather about processes!   

Nowadays, indeed, compositionality, diagrammatic thinking, string diagrams, deterministic 

processes (dynamical systems), and stochastic processes (random walks) are ubiquitous in 

mathematics.   

Interestingly, stochastic processes can be metaphorized as deterministic:  when we watch a random 

walker, we may “hallucinate” seeing it splitting instead of choosing randomly its direction. For 

example, we may metaphorize a frog jumping symmetrically (like tossing a coin to decide between 

right and left) on a row of stones in a pond, as a frog, which splits evenly into two halves, instead of 
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jumping each time. The random walk becomes then a splitting process, enabling us to construct the 

concept of probability by this metaphorical sleight of hand! Indeed, the probability of finding the frog 

at a given stone, after n jumps is just the “portion” of the frog you find there after n splittings.   

It could be argued that this duality: structure versus process, is intrinsic to mathematics and analogous 

to the particle-wave duality in Quantum Mechanics. 

So, from an enactivist viewpoint (Varela et al., 1991), the question: “Which is the true nature of 

mathematics?”  is as naïve, or non-sensical, as the analogous question about the true nature of the 

electron.  

In our view, the same duality arises in performance and choreography in dance. In choreography, we 

have “structural aesthetics,” usually aiming at helping the watcher to “see time in space.” The 

performance, or interpretation, of the dancer, appears as a process.  

The well-known Beckett’s Quadrat3 may be seen as a beautiful blending of structure and process.  

Notice how the bent monk-like posture of the walkers emphasizes the process of walking from here 

to there and so on, like a forward pointing arrow. A more upright posture would generate a completely 

different choreography. 

Structure may be seen as a constraint, but it is also a background, or a playground, where freedom 

may be enacted.  

In our approach, the dancers enact processes instead of building structures with their bodies. So, they 

dance mathematical processes (instead of dancing mathematical proofs, for instance, as in the related 

work of Milner et al., 2019). We engage then in stochastic dance and flow of motion dance, which 

we describe below.  

Stochastic dance  

Stochastic dance is akin to stochastic music, developed last century by Xenakis. It has however, older 

avatars, like Mozart, who showed how to compose minuets by tossing dice. Similarly, contemporary 

choreographer Cunningham took apart the structural elements of what was considered to be a 

cohesive choreographic work (including movement, sound, light, set, and costume) and reconstructed 

them in random ways.  

It is well-known that randomness generates shapes and forms: tossing a coin one hundred times 

generates a fractal-like shape resembling a mountain ridge. Our main idea is that randomness also 

generates movements, dance, and even choreographies. 

To try to embody this idea amounts to exploring an enactive and experiential analogue of stochastic music 

in the realm of dance, where the poetry of a choreographic spatial/floor pattern is elicited by randomness 

in the form of a mathematical stochastic process, e.g., a random walk—a stochastic dance of sorts. 

Among many possible random walks, we consider two simple but paradigmatic examples (Soto-

Andrade & Shulman, 2021), in the form of two scenarios proposed to the students/dancers:   

First scenario  

 
3Text und Bühne. (2012, November 12). Samuel Beckett: Quad I+II (play for TV) [Video file]. 

https://www.youtube.com/watch?v=4ZDRfnICq9M 

https://www.youtube.com/watch?v=4ZDRfnICq9M
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The walker is a frog jumping randomly on a row of stones in a pond, starting at a given stone and 

choosing right or left as if tossing a coin.  

Second scenario 

The walker is a person walking randomly on a square grid, starting at a given node, and choosing 

each time randomly, equally likely N, S, E or W, and walking non-stop along the corresponding edge, 

up to the next node, and so on.  

Quite natural, but somehow “impossible,” questions arise in this situation, like: 

Where will the walker/dancer be after a while? 

Notice that we have no definitive answer to this question. The first answer that comes to mind is: 

“Nobody knows.” We may, however, notice stepwise that after a given number of jumps or steps, there 

are possible and impossible locations, some possible locations are “more possible” than others, etc. 

Mathematically, however, these random walks may be studied in a friendly and efficient way with 

the help of “hallucinatory” metaphors (Seth, 2021; Soto-Andrade, 2014, 2018), e.g., 

A Splitting Metaphor: The walker splits equally into parts instead of randomly choosing its direction 

of movement.  

A Pedestrian Metaphor: Instead of our single walker, we hallucinate a bunch of walkers, which split 

equally at each stage into subgroups which go in the different possible directions.  

These metaphors suggest several ideas for a choreography, which are more complex than just having 

one or more dancers perform the random walk, and which turn our random process surprisingly into 

a deterministic one! 

We now discuss in more detail our two scenarios, both mathematically and choreographically, with 

the help of the aforementioned metaphors.  

First scenario: The random walk of the frog on a row of stones in a pond 

The Splitting Metaphor sees that the frog, instead of jumping right or left, splits into two halves, 

which go right and left.   

The Pedestrian Metaphor, in the case of a 3-step random walk, sees an army of eight frogs crouching 

at the starting stone, which splits into two groups of four, going right and left, which in turn, split into 

two groups of two, going right and left, which in turn split into two single frogs, going right and left. 

See Fig. 1 for a mathematical visualisation of this process unfolding in time, where time flows 

downwards, as indicated by the vertical descending arrow. Here the horizontal green path of the frog 

corresponds to the choices: (our) right, left, left. The descending green path is the unfolding in time 

of the actual frog’s path (as in relativity theory). 
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Figure 1: The 3-step random walk of the frog 

As we see in Figure 1, the successive distributions of the army of eight frogs may be described as  

• (0,0,0,8,0,0,0) 

• (0,0,4,0,4,0,0) 

• (0,2,0,4,0,2,0) 

• (1,0,3,0,3,0,1) 

We enacted this simple choreography in a workshop with eight dancers on October 17th, 2022. In this 

video4, we can see the eight frogs/dancers splitting thrice into halves on the line of seven stones/spots 

and so executing each of them one of the different eight possible paths of the frog.   

In fact, in our workshop, we just asked the eight dancers to enact, each of them, one of the eight 

possible paths of the frog. In other previous workshops, with several groups of eight participants 

working in parallel (mostly in-service primary school teachers), we observed that some groups chose 

a “Magister Ludi,” who would hand out a script to every dancer, indicating the path (e.g., right, left, 

left), which the dancer is to enact. Other groups, however, after some discussion, proceeded in a 

clever, non-hierarchical way, dispensing with a Magister Ludi by just splitting thrice into halves! In 

our last workshop, we observed that at least one dancer spontaneously got the same idea. 

After arriving at their end node/position, the dancers can try to retrace their steps to return all to the 

starting node. This creates a quite harmonious unfolding and enfolding pattern, which could be 

repeated over time.  

Of course, for a 4-jump random walk, we would need to recruit sixteen dancers starting at the same 

node of a discrete line on the stage and execute, each one, a different path of the sixteen possible 4-

jump paths the frog can follow. 

Notice that among other possibilities, the dancers could also enter the stage, one by one, describing 

sequentially the different possible random paths in the spirit of Beckett’s Quadrat1. However, to have 

 
4 Maycenii, G. (2022, November 15). Dance/math workshop (3) [Video file]. https://youtu.be/7m7d3kNxPx4  

 

https://youtu.be/7m7d3kNxPx4
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a closer analogue to Beckett’s choreography, we could let our frog jump on a square (or another 

polygon) of stones in a pond. Then we could have 16 dancers execute each of the sixteen different 

possible 4-step paths the frog can follow, starting at the same stone, and exiting the square after the 

fourth step, with a time shift of two steps, say. So here, the dancers instead of following all the same 

deterministic path, with a time shift, as in the Quadrat, would be following a different deterministic 

path each.  

Second scenario: The 2D symmetric random walk on a grid 

The splitting metaphor hallucinates the walker splitting into four-fourths, which go N, S, E, W at 

each step, and so on.  Then the portion of the walker landing at each case after n splittings (obtained 

by merging the incoming minor pieces of the walker) would give the probability of finding the whole 

walker at that location after n steps.   

In our workshop, we enacted, instead, the friendlier pedestrian metaphor for a 2-jump 2-dimensional 

random walk, which hallucinates a group of 16 walkers, which split evenly into four groups of four, 

which go N, S, E, W, then split again into four walkers, each going to each cardinal direction. See 

Figure 2 for a visualization of this metaphor, where the 16 walkers-dancers are represented by stacked 

coloured cubes, like Chinese dancers, who could climb onto each other’s shoulders. Notice that the 

groups of four have split sequentially, one after the other, instead of splitting simultaneously, as in 

the actual choreography, for the sake of clarity.   

Notice that in this way, the sixteen dancers enact the sixteen possible 2-edge paths of a single random 

walker, so their collective movement would reveal then the unfolding of all possibilities for this (2-

step) random walk. 

Also, notice that the final distribution of the group of sixteen dancers provides a sensible answer to 

the “impossible question”: Where will the walker be after two steps?    

We see indeed the possible locations (nine possible cases) for the walker and that some are “more 

possible” than others (they have more cubes stacked on them). This qualitative ranking can then be 

quantified by the proportion of walkers standing a given case after walking two edges. For instance, 

we have 4/16 for the starting case (the home case) and 1/16 for the four “extreme” cases.   

 

Figure 2: Pedestrian metaphor for the 2-step 2D random walk 
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In this way, we have constructed, in a pedestrian way, the notion of probability: we say that the 

probability of finding the walker back at home after two steps is 4/16, and so on, for the other possible 

cases. This is the best answer that we can give to our “impossible” question. 

For a 3-edge 2D random walk, this metaphor would recruit a group of 64 dancers, which split evenly 

thrice into fourths, enacting in this way the 64 possible 3-edge paths of the single random walker.   

There are many other possible choreographies suggested by this type of random walk. Among others, 

the dancers could choose their direction ad libitum after some spinning, each time, on a grid-free 

stage, but keeping the same step length, as in statistician Pearson’s model for a mosquito random 

flight (Pearson, 1905)5.     

We are interested in various possible spin-offs of these choreographies, which intertwine dance and 

mathematical cognition.  For instance, when the dancers choose each one a different path, they will 

notice that their final distribution on the nodes is uneven (interesting shapes emerge, as in Figure 2).  

In this way, just by moving together, choreographer and dancers can find a quantitative answer to the 

impossible question: Where will the walker/dancer be after a while?  Indeed, the percentage, or 

proportion, of dancers ending up at each node after a given number of steps is the probability of the 

random walker landing there after that number of steps. This could be seen as an instance of swarm 

intelligence, where knowledge emerges from a collective performance. We get in this way a glimpse 

of the interplay between individual agency and the intelligence of the whole. 

Flow of motion dance: Dancing arithmetical flows  

By flow of motion dance, we understand in this paper the choreographic bodily enactment of a 

dynamical system in some mathematical setting. As the stage for this dynamical system, we focus on 

a finite cyclic universe, mathematically modelled by the integers modulo m (for a fixed natural integer 

m), which we visualize as a regular polygon with m sides, on which the discrete line of the relative 

integers is suitable wound or coiled around. 

We remark that usually, students do arithmetic modulo m by calculating with the integers and 

reducing modulo m only in the final step. Our idea is on the contrary, to really move to the finite 

cyclic universe of the integers modulo m and to dwell and calculate there.     

Our dynamical system will be arithmetical: its dynamics is given by the repeated multiplication by a 

fixed integer k modulo m. Then each integer a modulo m is the starting point of a trajectory (its fate, 

or destiny, metaphorically speaking) consisting of its successive images   

a, ka, k2a, k3a, … , kna, … 

under multiplication by k modulo m. This trajectory is usually called the progressive orbit of a under 

multiplication by k.  

See Jorge Escuti video6 for an animation of the orbits of this dynamical system in the case m = 16 

and m = 17 for all possible k’s, from which Figs. 3 to 6 are extracted.  

 
5 Cranna, V. (2015, March 27). Karl Pearson and Sir Ronald Ross. Library, Archive & Open Research Services blog. 

https://blogs.lshtm.ac.uk/library/2015/03/27/karl-pearson-and-sir-ronald-ross/  

6 Escuti, J. (2020, August 10). Órbitas de multiplicación módulo 16 y 17 | Álgebra modular [Video file]. 

https://www.youtube.com/watch?v=KRFTIEAs75M  

https://blogs.lshtm.ac.uk/library/2015/03/27/karl-pearson-and-sir-ronald-ross/
https://www.youtube.com/watch?v=KRFTIEAs75M
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Notice that since our universe is finite, the trajectories of each integer modulo m must necessarily end 

up into an endless cycle (including the case of a cycle of length 1, i.e., a fixed point). A very 

interesting phenomenology of trajectories arises, as exemplified in the aforementioned animation.   

In our choreography, we recruit m dancers, each playing the role of an integer modulo m, embodied 

in a vertex of our regular m-gon. As in a flow in a river, where each drop of water follows a definite 

trajectory, every dancer starting at any given vertex of the polygon will follow a definite trajectory, 

enacting his/her “destiny”, which goes forever in a cycle or ends up falling into a sink.   

This creates the visual effect of a (human) flow, where dancer 0 is always a fixed point. An interesting 

phenomenology emerges, especially for non-prime m (like 12 or 16), where we find “attractors,” 

which can be “sinks” or “cycles” of various lengths.  

For instance, for m = 16 and k = 12, we see a flow that inexorably dies out—all the dancers finally 

“fall” into the sink 0 (Fig.  3).  The same happens for k = 6, but in a more intricate way (Fig. 4). For 

the case k = 13, we have two “square cycles,” vaguely reminiscent of Beckett’s Quadrat, besides two 

“flips” (2-cycles) and four fixed points. Interestingly, from an arithmetic viewpoint, we get the same 

flow but backward (the “reverse flow”) if we take k = 5, for which the calculation of the flow is 

friendlier. The arithmetical explanation of this fact is that 13 x 5 = 65 = 16 x 4 + 1, which equals 1 

modulo 16 so that 5 is the multiplicative inverse of 13 modulo 16. So, multiplying by 5 “reverses” 

the effect of multiplying by 13.  

In the prime case m = 17, for k = 4 the global flow (fixed point 0 excluded) decomposes into four 

disjoint flows, which are “isomorphic” 4-cycles. A pattern which could be revealed through the 

dancers' movements (who could be clad in the corresponding cycle colour).   

 

Figure 3: The flow for m = 16, k = 12 
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Figure 4: The flow for m = 16, k = 6 

 

 

 

 

 

 

 

 

 

Figure 5: The flow for m = 16, k = 13 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The flow for m = 17, k = 4 



 278 

In our 2022 workshop, we enacted the “clock case” (m =12), for k = 3 only, whose dynamics is 

pictured in Fig. 7, drawn by one of our mathematics teacher students. 

 

 

Figure 7: The flow for the “clock case” m=12 and k=3 

We see in this case: 

• Two fixed points, 0 and 6, which are “sinks” for 4, 8 and 2, 10, respectively. 

• A 2-cycle formed by 3 and 9, which “attracts” 1, 5, 7 and 11. 

This arithmetical dynamic was enacted choreographically by 12 dancers in our 2022 workshop7. They 

calculated their trajectories mentally first (e.g., 1, 3, 9, 27=3, 9, 3, …, modulo 12). Then they 

improvised freely the way they moved from one vertex to another, paying attention to each other’s 

movement, instead of moving with a rigid gait as in Beckett’s Quadrat.  

Findings  

In our previous workshops with primary school teachers engaged in a professional development 

program at the University of Chile in Santiago and elsewhere in Chile, we observed that roughly one 

half of the groups appointed a “Magister Ludi” to enact all the different possible paths of the walker, 

with no repetition, and the other half realised they could proceed in a non-hierarchical way, just by 

splitting into halves, over and over.  

In our 2022 workshop, one dancer—with no special mathematical training or inclination— 

immediately suggested the non-hierarchical way, in the case of the frog jumping thrice, which was 

readily accepted by the other dancers.   

All dancers participating in the later workshop reported afterwards that their enacting of mathematical 

processes had been a dramatically unexpected experience. Indeed, mathematics was hitherto 

something totally alien to them, just formulae, calculation by rote or esoteric Greek plane geometry. 

 
7 Maycenii, G. (2022, November 15). Dance/math workshop (1) [Video file]. https://youtu.be/bQPGmcgCelU  

https://youtu.be/bQPGmcgCelU
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Now, they felt that they could access mathematics through their bodily experience, a cognitive 

modality which was ignored, thwarted, and even despised in their previous educational experience.  

Some said that the embodied approach to mathematics they had experienced was a powerful tool to 

democratize mathematics, unknowingly echoing the declared aim of Cantoral’s socio-epistemology 

(Cantoral, 2013), which they did not know about. 

They also pointed out that they felt that developing an affective relation to the numbers modulo 12 

and their fate helped them to reconstruct their relation to mathematics. 

They were amazed to discover that mathematical objects and processes can be interpreted in different ways. 

They fathomed that interpretation is indeed a key notion in both choreography and mathematics.  

They also appreciated the big difference between visualizing mentally a mathematical process and 

bodily enacting it. They disagreed with the traditional claim that constructing mental images is all 

that there is in mathematics. 

Discussion and open ends  

The main thrust of our paper is that mathematical processes, deterministic or stochastic, naturally 

generate shapes, movement and dance through embodiment.  More concretely, we have seen that an 

enactivist and metaphorical approach to mathematics suggests choreographies related to 

mathematical objects.  Since we deem processes more relevant than structures, among mathematical 

objects, we addressed the question: How can we dance mathematical processes?  

We then explored how to dance stochastic processes (exemplified by simple one and two-dimensional 

random walks) and deterministic processes (exemplified by arithmetical dynamical systems in the 

finite cyclic universe of the integers modulo m).  

We implemented some pilot workshops, first with in-service primary school teachers and more 

recently with dancers (some of them also teachers), where the participants enacted: 

- The 3-jump random walk of a frog on a row of stones in a pond, 

- The arithmetical dynamical system generated by repeatedly multiplying by 3 in the universe of the 

integers modulo 12, seen as the usual clock.  

The participants were amazed to discover that mathematical objects and processes could be bodily 

interpreted in sundry ways. In the 2022 workshop, the dancers freely interpreted the transition from 

one hour of the clock to another (i.e., from one integer modulo 12 to another, or from one vertex of 

the regular dodecagon to another). In fact, the whole choreography and bodily enactment can be seen 

as an “interpretation” of a mathematical process.  Both in mathematics and in choreography, manifold 

interpretations are possible. In the case of mathematics, this is not so apparent in traditional teaching, 

where learning by rote and robotic procedures are emphasized.   

The added liberty involved in the interpretative enaction of each dancer of an abstract dynamical 

system is not superfluous or irrelevant; it might seem so from a purely mathematical viewpoint, but 

it is not so for the learners, especially if we do not see mathematics as a corpus of knowledge carved 

on marble but as a shared human experience. 

We observed that bodily enacting abstract mathematical notions is indeed possible and makes a huge 

difference for the learners, as the participants in our last pilot workshop reported. 
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We see the emergence of non-hierarchical procedures among the dancers as an avatar of human 

“swarm intelligence,” especially in the case of collaborative work or collective improvisation; indeed, 

dance lends itself better to experience the collective than mathematics as usually taught or practised. 

We can see dance as a game in space, time, and movement, unfolding in the logical structure of a 

choreography. Working in the collective is crucial in this sort of game; each one does something on 

his/her own and all together create an ensemble, relating to one another (a sort of “egregor,” some 

would say). So, dance creates a relationship with the collective. 

In traditional mathematics, on the contrary, learning appears as a “one-person show” where learners 

are silent and isolated in the classroom, evaluated verbally and symbolically in isolation, and peer 

communication and collaboration are forbidden so as “to separate the wheat from the chaff” 

efficiently.  Criticism of traditional repressive and selective mathematical teaching has been present, 

however, in mathematics education since the 1960s; see, for example, Brousseau (1965), where 

playful suggestions for “mathematics lessons without words” at the early primary school are 

presented. The role of dance in relation to the non-verbal and embodied learning of mathematics was 

not yet duly appreciated at the time. For a recent criticism of cognitive abuse in mathematics teaching, 

see Watson (2021). 

When mathematics intertwines with dance, however, the crucial role of the collective can “percolate” 

from dance to mathematics, so to say. It becomes easier, then, for a group of learners to engage in a 

collective improvisation (a cognitive random walk) when tackling a mathematical problem 

collaboratively.  

We also remark that in dance, we experience and observe; each dancer has a (mental and bodily) 

memory of what she and the others did before, how their trajectories crossed, for instance. 

Interestingly, even if one of our arithmetical flows is not (globally) reversible, each dancer can reverse 

their own trajectory. 

As open ends, questions, and conjectures, we may mention the following. 

Each mathematical process suggests a broad spectrum of possible choreographies.   

Different metaphorizations of a given mathematical process generate different choreographies. We 

could explore “metaphor generated choreographies.” 

Could collective choreographic improvization trigger new mathematical ideas, as sheer collective 

mathematical improvization does? 

Our experimentation suggests that the notion of visualization should be revisited, not as just a mental 

mechanism but as a whole-body activity. 

An open question among others is how, besides enacting spatial patterns on the floor, could the 

dancers enact the flow of motion in their own bodies. 

Regarding limitations of our study, it would be interesting to try our approach to intertwining dance 

and mathematics with a broader spectrum of learners, both mathematically inclined and not. Up to 

now, we have implemented it just with in-service primary school teachers and a small number of 

professional and amateur dancers interested in exploring the relationship between dance and 

mathematics.   
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Also, it may seem the mathematics involved in our mathematical processes are too simple. In fact, 

the mathematics underlying multiplicative dynamical systems are subtler than those underlying 

additive dynamical systems (where we just repeatedly add a fixed number k). In our case, the 

phenomenology is richer, and the dancers/learners have the possibility of discovering, by themselves, 

for instance, that the fact that 13 is the multiplicative inverse of 5 modulo 16 “means” that the 

associated flows, to k = 5 and k =13, in the integers modulo 16, are one the reverse of the other. Also, 

the fact that under multiplication by k = 12, we have four numbers, which go to the “attractors” 4, 8, 

and 12 modulo 16 (so the flow is not reversible) has an arithmetical “explanation”:   in each case, 

those four numbers differ by multiples of 4 (like 7, 11, 15) and 12 x 4 = 48 = 16 x 3 = 0 modulo 16. 

Nevertheless, although this flow is not reversible, each dancer could reverse their path, relying on 

their body memory. 

On the contrary, all flows associated with non-zero k’s are reversible in the integers modulo 17 and, 

more generally, in the integers modulo m for all prime m. Recall in this context that the reversibility 

of a process is a key question in systems theory, which we are approaching here in an elementary and 

embodied way. 

As a final caveat, to say that our approach to mathematics and dance represents mathematical facts 

in an iconic, embodied, enactive way is perhaps not the whole story and a somewhat biased 

description. We might better say that “something hard to fathom” has a symbolic mathematical facet, 

an iconic facet, and an enactive facet, each being a metaphor for the other. This “something” is being 

somehow constructed by us, enactively in the sense of Varela et al. (1991). 
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Interdisciplinarity of science, mathematics, and technology in a 

context of elementary school scientific investigation using a virtual 

manipulative 

Takam Djambong1 

 

This study is qualitative research carried out with 29 Grade 7 and 8 primary school students. The 

objective of this study was to bring out, in a context of scientific investigation on the principle of 

buoyancy with the help of a virtual manipulative, the representations, thinking processes, and 

learning approaches mobilized by the pupils, with a view to constructing a conceptual scheme of the 

components of an interdisciplinary approach involving science, technology, and mathematics. The 

conceptual scheme of the components of STEM interdisciplinarity that emerged from the data 

analysis is based on three pillars, which are the learning, epistemological, and cognitive components 

and articulates in a complex way the learning approaches, the different modes of symbolic 

representations, and the thinking processes resulting from the preceding components.   

Keywords: STEM education, interdisciplinarity, symbolic representation, virtual manipulatives, 

buoyancy. 

 

Context, background, and objectives 

Today’s elementary science education evolves as students are confronted with the analysis or more 

complex problem-solving through the integration of knowledge, know-how, and interpersonal skills 

resulting from interaction of different disciplines (science, mathematics, and technology in 

particular). Complex problem-solving processes increasingly involve the manipulation of 

computational models (virtual manipulatives) of scientific phenomena (Weintrop et al., 2016). Part 

of the projects carried out within the CompéTICA network between 2015 and 2018 conducted several 

case studies of innovative practices (Freiman et al., 2017). 

So far, the case studies conducted in the CompéTICA network have explored various aspects of skill 

development in different life contexts (social, academic, personal, professional). These studies have 

tried to highlight some best practices that allow the articulation of techno-instrumental skills and 21st 

century skills. However, the place of STEM interdisciplinarity in the continuum of digital skills that 

combines techno-instrumental skills with soft skills remains to be clarified. The role that STEM 

interdisciplinarity could play in the junction between techno-instrumental skills, soft skills, and 

disciplinary skills in a school context remains to be elucidated. 

This article presents one of these studies, which aimed to: (1) identify the different modes of symbolic 

representation mobilized by elementary school students from an interdisciplinary perspective; (2) 

bring out the different thinking processes used by the students during the scientific investigation 

activity on Archimedes’ principle using a virtual manipulative; (3) bring out a conceptual scheme to 

explain the articulation between the mobilization of different modes of symbolic representation, the 
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mobilization of different thinking processes and the interdisciplinarity of science, mathematics and 

technology. 

The conceptual framework 

Integrated STEM education 

The main interest of our study is that it places the activity of learning science using a computational 

artifact (the virtual manipulative) within the conceptual framework of the integral approach described 

by Kelley and Knowles (2016). This approach is conveyed by the STEM movement in connection 

with the emergence of new forms of 21st century literacy of which learning integration through 

transdisciplinary, multidisciplinary, or interdisciplinary approaches seems to be one of the main 

cornerstones today. This third interest of our study raises, in parallel, the need to build a didactics of 

STEM disciplines to frame this movement, which is emerging as one of the important axes of 21st 

century learning in the digital era. 

Sengupta et al. (2018) pointed out that the use of computational modes of representation of data, 

information, concepts, processes, or phenomena in the context of learning STEM subjects, implies 

that students are confronted with the manipulation of multiple forms or modes of symbolic 

representation of knowledge. The simultaneous use of multiple forms or modes of symbolic 

representation of knowledge goes beyond the traditional operations of coding or programming, which 

can themselves, from our point of view, be seen as alternative modalities of data or information 

representation. 

STEM education can link scientific inquiry, by formulating questions answered through investigation 

to inform the student before they engage in the engineering design process to solve complex problems 

(Kennedy & Odell, 2014). The investigative approach in science (inquiry process) is a favorable 

context for the emergence of pedagogical practices aimed at integrating knowledge through 

interdisciplinary learning activities (Hasni et al., 2015; Kelley & Knowles, 2016; Walker et al., 2018). 

On the other hand, the potential of computational modelling to improve students’ understanding of 

science and mathematics has been documented by several authors (Repenning et al., 2010; Wilensky, 

2014). For Wing (2014), computational thinking is the driving force of scientific research that has 

potential for cognitive development and conceptual change in students when they are engaged in 

relational thinking through the construction of links between the scientific method (Landriscina, 

2013) and mathematical thinking (Savard et al., 2013; Beaufils, 2000). Computational thinking 

highlights the advantages of involving students in the manipulation of computational models of 

scientific concepts and phenomena. This allows students to articulate and match different registers of 

symbolic representation to examine different facets of the same phenomenon. This was supported by 

Gauthier (2014) with students building and exploring models using dynamic algebra software. 

Interdisciplinary learning approaches 

Sriraman et al. (2008) have shown that pedagogical practices that build on an interdisciplinary 

approach by emphasizing the connections and interdependence that can exist between different 

disciplines (mathematics, biology, chemistry, and physics), in a meaningful, authentic, and situated 

learning context, can have a positive impact on increasing students’ personal interest in science and 

mathematics.  
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The integration of STEM disciplines aims to place the student at the heart of a process of meaning-

making involving a complex set of thinking processes, learning approaches and symbolic 

representation systems. This integrative vision of knowledge could be supported by the model for 

restructuring the Quebec primary school curriculum in an interdisciplinary perspective (Lenoir, 

2020). This interdisciplinary model envisages a categorization of school subjects according to their 

relationships to the underlying mode of representation of reality inherent in each school discipline.  

Thus, in a resolutely epistemological perspective, Lenoir (2020) considers: 

• disciplines that contribute to the construction and structuring of natural, human, and social 

reality (arts, natural, human or social sciences); 

• disciplines that enable this reality to be expressed using a specific symbolic representation 

system (mathematics, languages); 

• disciplines that help to establish relationships with reality (physical, moral, or religious 

education, and technology). 

Moreover, the interdisciplinary perspective presented in Lenoir's model is designed for action and 

allows for a close link between the cognitive dimensions and the instrumental and procedural 

dimensions of learning.  

Virtual manipulatives and simulations 

The construction of knowledge can be done through the manipulation of digital tools (virtual 

manipulatives, programming, simulation or game design environments, creative labs, robotics, etc.) 

and lead to the construction by students of symbolic artefacts (models and conceptual representations) 

or tangible artefacts (physical models), as evidence of the articulation between abstract and 

procedural thinking (Papert, 1991). 

According to Moyer-Packenham and Bolyard (2016, p. 3), a virtual manipulative can be defined as 

“an interactive, technology-enabled visual representation of a dynamic mathematical object, 

including all of the programmable features that allow it to be manipulated, that presents 

opportunities for constructing mathematical knowledge.” According to these authors, the term 

“interactive” was used to distinguish dynamic computational representation enabling interactions 

with the users and simple static images. The term “technology-enabled” refers to the fact that all 

virtual manipulatives are considered, not only the Web-based ones. Finally, the concept of “visual 

representation” emphasizes the fact that a mathematical idea could be represented by a pictorial 

image. 

The use of virtual simulations also makes it possible to construct learning tasks that encourage 

students to mobilize thinking processes or cognitive skills related to several disciplines. Thus, the 

integration of the use of virtual simulations in teaching would not only promote the development of 

transdisciplinary skills in learners, but also their ability to mobilize knowledge and know-how from 

several disciplines to carry out a learning task. 

In addition to the contributions already mentioned above, simulations in certain virtual environments 

would not only make learning attractive and meaningful but would also increase students’ motivation 

and interest in learning the subject concerned. Such simulations would also allow the development 
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of in-depth learning that could lead to the conceptual understanding of the phenomena studied 

(Freiman et al., 2012). 

The concept of simulation could be defined as: 

• a dynamic and interactive representation of a model, an event, a device or a phenomenon 

constructed to present and understand how a system works (Depover et al., 2007; Legendre, 

1993);  

• an intermediate layer (simulation environment) that favours a relationship between events and 

phenomena in the real world (or material world) and the interpretation of scientists in terms 

of theories, principles, laws, or models (Beaufils & Richoux, 2003);  

• an interactive representation of a system under study based on a model (simplified 

representation of reality) of that system (Landriscina, 2013). This definition of simulation, 

however, limits its meaning to situations specific to educational and scientific contexts;  

• a tool with cognitive potential that can foster the development of high-level cognitive skills, 

such as creative thinking, abstract thinking, complex problem solving, and the ability to work 

in teams (Jonassen & Carr, 2000). 

Beaufils and Richoux (2003), have highlighted the didactic potential of simulations in terms of 

possible relationships and connections with experimentation, study and manipulation of models, 

effects on conceptual change and cognitive development, or in terms of links with the implementation 

of a multi- or interdisciplinary approach in science learning (Landriscina, 2013). 

Research question 

This study was driven by the following research question: Which conceptual scheme of 

interdisciplinary connections emerge between STM disciplines in a context of scientific inquiry on 

buoyancy using a virtual manipulative environment? 

Methodology 

This study is a qualitative and interpretative case study informed by Merriam (1998) inductive approach. 

Our qualitative research is based on the interpretative paradigm and on a constructivist epistemology, 

which postulates the existence of multiple realities (Guba & Lincoln, 1994) 

Data was collected from 29 students (11 from Grades 7, and 18 from grade 8) in two Francophone 

schools in Moncton (New Brunswick). The data collection techniques consisted of a concomitant 

think-aloud protocol, retrospective semi-structured interviews, and written and digital traces of 

students’ work. A learning scenario with three tasks was designed according to the Predict-Observe-

Explain strategy (Gauthier, 2014). Interview guides and a logbook were used as data collection 

instruments. The data analysis strategy was based on conceptualizing category analysis according to 

the coding approach leading to data reduction (Thomas, 2006). The data analysis was carried out in 

four steps: 

• Microanalysis (initial coding of the data corpus) 

• Categorization (open coding) 

• Articulation of categories (axial coding) 

• Category integration (selective coding) 
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In our research, think-aloud protocols and activity traces were collected from students involved in the 

three science problem-solving tasks using a virtual manipulative from PhET simulations website2. 

These tasks were designed to be implemented using the Predict-Observe-Explain strategy. The three 

problem-solving tasks proposed to students in our experiment were designed based on specific 

concepts (Archimedes' Principle, buoyancy, and density) taught in the grade 7 and 8 science and 

technology curriculum.  

In the first task, students were asked to explain and justify why objects float, sink, or remain 

indifferent in certain liquids, while in the second task, they were asked to identify the factors on which 

buoyancy depends. In the third task, the students had to characterize the force responsible for the 

buoyancy principle through a mathematical modelling approach. The three tasks designed within the 

framework of the pedagogical scenario, which was proposed to the students, present a didactical, 

pedagogical, and techno-instrumental interest. 

From the didactical point of view, the learning theme on the buoyancy principle is a classic case 

showing the extent to which students at different levels (primary and secondary) can maintain, over 

time, all sorts of inappropriate prior conceptions (Potvin, 2011), which nevertheless manage to 

survive even with the most convincing pedagogical lectures of teachers from the point of view of the 

explanatory power of the phenomenon. The goal of the different tasks that were proposed in the 

prediction phase was to bring out these initial conceptions or representations of the students as 

empirical data to be analyzed.  

From a pedagogical point of view, in addition to achieving the learning outcomes (general, 

transdisciplinary, and specific) prescribed by the grades 6-8 science and technology curriculum, the 

pedagogical scenario was designed to promote collaboration between students through the 

interactions generated by the socio-cognitive conflict induced by the teamwork designed for the 

students. On the other hand, the nature of the proposed tasks was to encourage interdisciplinary 

approaches, requiring the mobilization, by the students, of concepts or practices from several 

disciplinary fields (science, mathematics, and technology). 

On the techno-instrumental level, the pedagogical scenario proposed to the students involved the use 

of a virtual manipulative on the Archimedes principle as a tool for scientific investigation. The virtual 

manipulative that was used from the “PhET simulations” suite and was developed under an open-

source license by a research team from the University of Colorado in the United States, also has the 

particularity, according to some authors, of promoting the implementation of a modelling approach 

in science (Shen et al., 2014). 

Procedure 

Table 1 below shows schematically the four stages and the timeline of the methodological design that 

we implemented after having chosen the locations of schools and selected the two grades and the 29 

students who took part in the experimentation. 

 

 

 
2 PHET Interactive Simulations. (n.d.). Interactive Simulations for Science and Math. https://phet.colorado.edu/  

https://phet.colorado.edu/


 289 

Table 1: Timeline of the methodological procedure 

 

Stage 
Activities 

carried out 

Raw data 

analyzed 

Analysis strategy 

implemented 
Results Timeline 

Deep preliminary 

reading of a rich 

corpus segment 

and initial coding 

-First phase of 

data collection 
and 

transcription 

-Careful 
reading of the 

corpus 

-Labeling 
(Annotation of 

the corpus) 

-Open coding 

(creation of 

codes) 

-Various research 

journal entries 

-observation notes 

-Verbatim of corpus 

(interviews and 

thinking protocols) 

or transcribed 

student activity 

records 

Line by line 

analysis 

 

-Immersion in the 

research environment 

-Discovery of the 

research context 

-Initial coding of the 

corpus 

May 2017 

 

Categorization 

-Theoretical 

sampling 

-Second phase 

of data 
collection and 

transcription 

-Open coding 

-Verbatim of corpus 

(interviews and 

thinking  protocols) 
or transcribed 

student activity 

records 

-Various research 

journal entries 

-Observation notes 

Analysis by 

conceptual 

categories 

-Identification of the 

main conceptual 

categories, sub-
categories and 

central categories, 
phenomenon studied 

(Categorization) 

-10 conceptual 

categories created 

June-

September 

2017 

 

Articulation of 

categories 

 

-Axial coding 

 

-Verbatim of corpus 

(interviews and 

thinking protocols) 
or transcribed 

student activity 

records 

-Various research 

journal entries 

-Observation notes 

Analysis by 

conceptual 

categories 

-Characterization 

and pairwise 
articulation of 

conceptual 

categories that 
emerged from the 

initial and open 

coding phases 

-Creation of 3 central 

categories 

October -

November 

2017 

 

Integration of 

core categories in 

a conceptual 

scheme 

- Selective 

coding 

 

-Verbatim of corpus 

(interviews and 

thinking protocols) 
or transcribed 

student activity 

records 

-Various research 

journal entries 

-Observation notes 

Analysis by 

conceptual 

categories 

-Creation of a 
conceptual diagram 

integrating the main 

core categories 

identified 

December 

2017-
February 

2018 

Final report 

writing 
    

March 2018 

– July 2018 
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Coding process main steps 

In this study, we implemented a six-step coding process inspired by Thomas’ (2006) model and 

summarized in Table 2 below. 

Table 2: Main phases of the analysis according to the process of coding the raw data corpus leading to 

data reduction 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

 

 

Prepare raw 

data. 

 

Preliminary, 

careful, and 

thorough 

reading of 

raw data. 

 

Identification 

of text 

segments 

specifically 

related to 

research 

objectives and 

questions. 

Coding of 

identified text 

segments to 

create 

categories. 

 

Revision and 

refinement of 

categories by 

reduction of 

redundant or 

similar 

categories. 

 

Design of a 

conceptual 

scheme that 

integrates the 

key categories 

identified or 

developed. 

 

 

Prepare and 

save all raw 

data in a 

common 

format. 

 

Read and 

summarize 

the data in 

order to 

become 

familiar with 

the content. 

 

Select several 

segments of 

text having a 

specific and 

unique 

meaning for 

their 

codification. 

Label text 

segments to 

create 

multiple 

initial 

categories. 

 

Retain the key 

categories to 

integrate into 

a conceptual 

scheme. 

 

Propose a 

conceptual 

scheme of the 

phenomenon 

or process 

studied. 

 

 

 

 

Results 

Interdisciplinarity components, core categories and conceptualizing categories  

We begin by presenting in Table 3 below the main components, core categories, and conceptualizing 

categories that emerged from our study and on which interdisciplinary learning approaches involving 

mathematics, science, and technology (digital learning tools such as simulations) could be based on. 

Table 1 above shows that the science-mathematics-technology interaction has, in the framework of 

our study, a certain resonance with the interdisciplinary approaches or interactions implemented in 

relation to the learning process, the symbolic representation and thinking process used by the students 

during the problem-solving activity in science using the virtual manipulative on the Archimedes 

principle. The three central categories were essentially intended to show how the mobilization of 

cognitive skills, learning approaches or symbolic representations specific to the three disciplinary 
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fields of science, mathematics, and computer science surface in the students’ discourses. These 

interactions thus highlight the possible interdisciplinary links that the pupils establish more or less 

consciously during their learning activity. The mobilization of these skills set by the students relies 

upon the nature of the tasks proposed and the prescriptions of the learning scenario, which induce the 

use of language, concepts or approaches specific to different disciplinary fields (science, 

mathematics, and technology literacy). Tables 4, 5 and 6 below present excerpts supporting this 

evidence.  

Table 3: Interdisciplinarity components, core categories and conceptualizing categories 

Interdisciplinarity 

component 
Core categories Conceptualizing categories 

Learning 

component 
Learning process 

Collecting and analyzing data 

Identifying patterns in quantitative data 

Manipulating affordances for operating on data 

Epistemological 

component 

Symbolic 

representation process 

Building a symbolic representation of a 

phenomena 

Building a mathematical representation of a 

phenomena 

Manipulating a computational representation of 

a phenomena 

Cognitive 

component 
Thinking process 

Modifying an initial representation of a 

phenomena 

Mobilizing cognitive skills related to science 

Mobilizing cognitive skills related to 

mathematics 

Mobilizing cognitive skills related to technology 

literacy 

 

Learning component  

Excerpt 28 in the Table 4 below, for example, highlights certain aspects of science-mathematics-

technology interdisciplinarity. The students (e.g., S28, S29 and S30) mobilized the concepts relating 

to science (gravity and density) and mathematics (numbers) by implementing a certain number of 

didactic approaches such as using mathematical symbolic representation in a process of constructing 

representations in science (X = 9.8*V*density of the liquid, for example). Excerpt 28 also shows all 

the numerical operations carried out by students S28, S29 and S30 following the manipulation of the 

affordances of the virtual manipulative in a context of scientific investigation. An aspect of 

interdisciplinarity highlighted by their conceptual model therefore refers to the possibility given to 

students to mobilize and combine different didactic approaches and techniques for representing 

knowledge specific to different disciplinary fields (STEM for example) as evidenced by the following 

statement: 
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Table 4: Learning component 

Investigation process 

(Science) 

S20: Ok uhhh for the wood...the brick, the volume of the brick... 

S21: We have to estimate the volume of the brick? 

S20: We have to estimate the volume of the brick. How are we going to put the 

width of the wood? 

S21: Ah...OK. If the mass of the wood is 4 kg, will it sink or float? 

(Excerpt 77: Verbatim PP- Task-1-Predict) 

Modeling process 

(Maths) 

S8: "X, Y and Z all have the same units, tenths and hundredths are not the 

same...". 

(Excerpt 31: Written traces TE-Task-3-Explain-and-Model) 

S5: "X, Y and Z are almost all the same. 

(Exceprt 32: Written traces TE-Task-3-Explain-and-Model) 

“S30: We would put gravity 

S28: Calculate and put the difference of... You have to calculate the 

difference between the two volumes 

S29: What are you doing? Do the 107.50 with...your calculator... 

S30: Do them with my computer? 

S29: Check 

S28: 107.50 - 100. 

S29: So it's 7.50 

S28: Calculate the value of the quantity X =9.8*V* density of the liquid... 

It's true that you can read that like you're better than me there..." 

(Excerpt 28: Verbatim PP-Task-3-Simulate-and-Observe) 

Instrumental genesis 

process (Technology 

literacy) 

S5: "I was not used to using the software, then uh.... I 

wasn't used to kilograms, then density...". 

(Excerpt 1: Verbatim Interview of student 

Bristan) 

 

 

 

 

S5: "Yes in oil. I click on thrust.... I'll click on 

gravity...same volume...same density...it still 

changes...and both float. And in water...if I put the 

same mass." 

(Excerpt 2: PP Verbatim – virtual manipulative 

handover) 

 

Cognitive component 

The excerpts in Table 6 below show that the students were able to articulate elements of scientific 

thinking through the construction of a mental model or conceptual representation of the principle of 

buoyancy (excerpt 81), mathematical thinking through the pattern recognition in a sequence of data 

(excerpt 82), and algorithmic thinking through the implementation of the if condition...then... loop 

(excerpt 104) 
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Table 5: Cognitive component 

Scientific thinking 

(building a mental 

model or conceptual 

representation of 

buoyancy principle) 

S5: If the kind of material is heavier than the density of the water, the body will 

sink, but if they are exact (equal), it doesn't matter, and then if it is less heavy, it 

will often float. 

(Excerpt 81: Verbatim interview of student Bristan) 

S6: If the density of the two things are the same, it won't matter, if the density of 

the liquid is smaller than the density of the object, the object will sink, and if the 

density of the liquid is bigger than the density of the object, it will float... 

(Excerpt 82: Verbatim interview of student Juliana) 

Mathematical 

thinking (Identifying 

patterns in a sequence 

of data) 

 

Algorithmic thinking 

(through the 

instrumental use of the 

virtual manipulative) 

"If the densities are equivalent, the object will be indifferent. If the density of the 

liquid is smaller than that of the object, the object will sink. If the density of the 

liquid is greater, the object will float’’ 

(Excerpt 104: Student Handouts S1 and S2 TE-Task-1-Explain-and-Model) 

S24: ‘’If it sinks it's because the density is greater than the liquid. Euuhhh...If it 

floats, it's because the density is smaller than the liquid and if it stays indifferent, 

it's because the density is equal to the liquid". 

(Excerpt 105: Verbatim PP-Task-1-Simulate-and-Observe) 

 

Epistemological component  

The epistemological component of this study highlights the construction, expression, manipulation, 

and modification of symbolic representations (as a means of expressing knowledge) by students 

involved in a scientific investigation process. 

The excerpts show that the students, during this learning activity, were able to:  

• build mental models of the concept of buoyancy (excerpt 45), 

• develop a mathematical model of the principle of buoyancy (excerpt 29), 

• manipulate the computer model of the buoyancy principle using a virtual manipulative (excerpt 2), 

• evolve their initial representations of the principle of buoyancy through the process of 

conceptual change (excerpt 56). 
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Table 6: Epistemological component 

Symbolic 

representation 

construction 

(Science) 

S3: Euuuh... it's that if the density of the object is smaller than the density of 

the liquid, erm... it would float, If you want it to float, you need the density of 

the liquid to be greater than the density of your object. If you want it to sink, 

it has to be the same amount of density of the solid and a small amount of 

density of the liquid. 

(Excerpt 45: Verbatim PP-task-1-Explain-and-model) 

Symbolic 

representation 

expression 

(Mathematics) 

 

Symbolic 

representation 

manipulation 

(Technology 

literacy) 

"Yes in oil. I click on thrust.... I'll click on gravity...same volume...same 

density...it still changes...and both float. And in water...if I put the same 

mass." 

(Excerpt 2: PP Verbatim - Handover) 

Symbolic 

representation 

Modification 

(Conceptual 

change) 

"I learned a lot of things like with different solids and different materials, 

there were different things that could like sink...float, like be indifferent. Like 

there were a lot of things that I didn't know too...". 

(Excerpt 56: Verbatim interview with student Odette) 

 

The third guiding principle advocated by the Science and Technology 6-8 curriculum and 

implemented during this learning activity is interdisciplinarity as a lever likely to promote the 

integration of knowledge and approaches specific to different disciplinary fields with a view to 

solving an identified problem. Thus, the educational scenario offered to the students enabled them to 

mobilize knowledge related not only to science, but also to mathematics and technology literacy (in 

its techno-instrumental dimension). Interdisciplinarity has thus resulted in the fact that students have 

been able to use intentionally and consciously mathematical concepts or operations in the context of 

problem-solving in science. The data indicate that didactical, epistemological, and thinking process 

components should also be taken into consideration when it comes to building interdisciplinary-based 

learning activities involving science, technology, and mathematics. 

The three central categories that emerged from this study highlight a certain resonance with the 

interdisciplinary interactions, which were observed in relation to the modes of thinking and in turn 

mobilized, the didactic approaches as well as the type of symbolic language used and manipulated by 

the students during the problem-solving activity in science using the virtual manipulative on 

Archimedes’ principle. These central categories, in conjunction with the conceptualizing categories 

that follow (see table 3), have made it possible to develop a conceptual scheme of a science-

mathematics-technology interdisciplinarity presented in the next section. 
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Our conceptual scheme of STEM interdisciplinarity components 

The conceptual scheme in Figure 1 below is based on the core and conceptual categories that emerged 

from our research question. This diagram highlights the main components on which interdisciplinary 

learning approaches could eventually be built based on a complex articulation between cognitive, 

epistemological, and didactic components from the different contributing disciplines (Science, 

Mathematics, and Technology literacy). 

 

Figure 1: Conceptual scheme of Science-Technology-Mathematics interdisciplinarity components 

The analysis of empirical data carried out in this study led to a conceptual scheme of 

interdisciplinarity components. This conceptual scheme indicates that the students’ activity was 

essentially based on a process of constructing, manipulating, expressing, and modifying their 

representations of Archimedes’ principle (epistemological component), which was itself 

implemented by relying on the scientific investigation process coupled with a modelling process and 

instrumental genesis process (learning component). The specific context in which the learning 

activity took place favored the mobilization by students of scientific thinking skills, mathematical 

thinking skills, and technology literacy skills (cognitive component). 

Regarding the first objective, the students in a context of scientific investigation of buoyancy 

(Archimedes principle) using a virtual manipulative had to articulate the development of a 

mathematical model of the Archimedes principle, the manipulation affordances of the computational 

model of Archimedes’ principle, as well as the verbal modelling of buoyancy in order to analyze the 

phenomenon explored. 

Regarding the second objective, the data collected during the study shows that the students used 

mathematical thinking, some traces of computational thinking, and the scientific method process in 

exploring buoyancy. 
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Finally, considering the third objective, the data suggests some disciplinary interactions between 

science, mathematics, and technology concepts, as a potential vector for the science, technology, and 

mathematics (STM) knowledge integration in a context of science learning in elementary school. 

These STM interactions are mainly represented by the ability of students to handle and articulate 

different modes of symbolic representations and different thinking processes to analyze and 

apprehend a scientific concept (the principle of Archimedes) under various perspectives. 

Scholarly significance  

The context of science investigation in elementary school using a virtual manipulative seems to have 

created favorable conditions aimed at:  

• bringing out several modes (conceptual, mathematical, and computational) of symbolic 

representations of the phenomenon studied; 

• bringing out several learning approaches (scientific investigation, mathematical modeling, 

and instrumental genesis of usage patterns);     

• encouraging students to mobilize skills or concepts specific to different subject areas (science 

– mathematics – technology). 

The conceptual scheme of the STEM interdisciplinarity components that emerged from the data 

analysis is based on three pillars of learning, epistemological, and cognitive components. This 

conceptual scheme articulates in a complex way the learning approaches, the various modes of 

knowledge representations, and the thinking processes resulting from the previous components. 

Firstly, the learning activity with the virtual manipulative thus allowed students to implement to some 

degree certain aspects of STEM interdisciplinarity, especially in terms of mobilizing concepts, and 

approaches or ways of representing knowledge from these different disciplinary fields. 

Secondly, the learning activity using the virtual manipulative also aimed at achieving certain 

transdisciplinary learning outcomes (TLOs) prescribed by the 6-8 science and technology curriculum 

such as critical thinking and the pedagogical use of technology-enhanced learning environments. 

Finally, our results help to highlight the importance of technologically rich learning environments in 

a context of scientific inquiry as a means for the integration of science, technology, and mathematics 

in an interdisciplinary perspective in elementary school. They also bring out the importance of 

bringing together different types of modelling (mathematical, computer, and verbal) in an 

interdisciplinary perspective of integrating knowledge from science, mathematics, and technology in 

elementary school. 

Conclusion 

In conclusion, this study shows that there could be a link between the students’ ability to solve the 

tasks proposed, the type of targeted skills related to computational thinking, and the degree of 

difficulty or complexity of the proposed tasks. The influence of the programming environment to 

which the students were exposed in the context of problem-solving tasks during the intervention, is 

difficult to demonstrate given the limitations associated with the experiment (small size of sample, 

non-randomized sample, lack of a control group). However, this study justifies the need for further 

studies to establish the validation of the proposed tasks based on more solid empirical evidence. It 
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could thus be useful to look at the effect that the nature of the pedagogical intervention in 

programming environments (visual versus tangible) could have on the validation of the proposed set 

of tasks. For this purpose, more subtle research design for the study and instruction for the problem-

solving tasks are needed. Our study shows that interdisciplinary approaches could go beyond the 

simple integration of knowledge and skills from different disciplines. It would also be relevant to take 

into consideration the didactic approaches, the epistemological frameworks and the thinking 

processes underlying each discipline in order to build learning activities in an interdisciplinary 

perspective. 
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Characterizing problem handling in the intersection between 

computational thinking and mathematics 

Raimundo Elicer1 and Andreas Lindenskov Tamborg1 

 

This communication reports on interventions in collaboration with a mathematics teacher aimed at 

developing and implementing teaching materials that introduce students to problem-solving tasks 

that integrate computational thinking (CT) and mathematics. Drawing on classroom observations, 

we seek to characterize the notion of CT-driven problem handling in the mathematics classroom. In 

this intersection, problem handling or solving has a prominent place, though its meaning may not be 

the same. We delineate three abilities in this characterization: to solve computational and 

mathematical problems through effective modeling, to pose own real-life inquiries as computational 

and mathematical problems, and to judge which elements of the solution strategies can be 

transferable. 

Keywords: Problem solving, computational thinking, mathematical competencies.  

 

Introduction 

Computational thinking (CT) has gained relevance in the educational research community since Wing 

(2006) defined this theoretical construct as a set of trainable skills and abstract ways of thinking. As 

a consequence, several countries are including programming and aspects of CT in their school 

curricula (Bocconi et al., 2022). In many cases, due to more or less apparent synergies, it is the 

mathematics syllabi and teaching practices that have adopted the responsibility to include CT. This 

paper is focused on one inarguable common element between CT and mathematical competencies, 

namely, the handling of problems. 

The ability to solve problems is at the core of many definitions and characterizations of CT. Wing 

portrays CT as “a way humans, not computers, solve problems” (Wing, 2006, p. 35), and argues that 

it encompasses “the thought processes involved in formulating a problem and expressing its 

solution(s) in such a way that a computer—human or machine—can effectively carry out” Wing 

(2017, p. 2). A systematic literature review defines CT more comprehensively as “the conceptual 

foundation required to solve problems effectively and efficiently (i.e., algorithmically, with or 

without the assistance of computers) with solutions that are reusable in different contexts” (Shute et 

al., 2017, p. 142). Mathematical situations are certainly among this multiplicity of contexts, as 

understanding and making sense of computations is an integral part of mathematics (Li et al., 2020). 

The literature validates problem solving as an ultimate purpose of CT in mathematics learning. For 

example, both Weintrop et al.’s (2016) and Pérez’s (2018) characterizations of CT in mathematics 

classrooms frame computational problem-solving as an essential category of practices. Kallia et al. 
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(2021, p. 20) define CT in mathematics education as “a structured problem-solving approach in which 

one is able to solve and/or transfer the solution of a mathematical problem to other people or a 

machine.” Overall, CT-related practices and abstract ways of thinking can be a tool to aid 

mathematical problem solving. 

There is a vast tradition of problem solving (PS) in mathematics education, and it can be traced back 

to George Pólya. As a mathematician and educator, he devised a generalized strategy for PS (Pólya, 

1957) consisting of understanding the problem, devising a plan, carrying out the plan and looking 

back. Later, Schoenfeld (1985) built explicitly on Pólya to describe four categories of mathematical 

behavior centered around problem solving: resources, heuristics, control and belief systems. This 

time, backed by empirical evidence in learning settings. Schoenfeld (1992) argued that Polya’s 

influence resides in framing of PS as a fundamental element of mathematical invention, contrary to 

the Euclidian-style deductive character of how it is presented. This agenda has influenced the goals 

and ways of learning and teaching mathematics ever since. 

In general, problem solving has served as a means for teaching mathematics (Cai, 2010), and thus PS 

competences tend not to be separated from the domain-specific objectives in the curriculum (Artigue 

& Blomhøj, 2013). In the Danish framework for mathematical competencies (KOM), Niss and 

Højgaard (2011) delineate problem handling as the ability to pose and solve different kinds of 

mathematical problems. In their recent work, they highlight that PS concerns mathematical problems, 

and tackling extra-mathematical problems belongs to the modeling competency (Niss & Højgaard, 

2019). Furthermore, Geraniou and Jankvist (2019) contributed a theoretical networking of 

mathematical and digital competence (MDC), in which PS is also mentioned. One of the three main 

components of MDCs involves “being able to use digital technology reflectively in problem solving 

and when learning mathematics” (p. 43).  

PS then appears as a central aspect of both digitalized mathematics education and CT. However, we 

still lack empirical insights into how mathematical problem handling could (and perhaps should) be 

taught and learned in CT-driven mathematics classrooms. In this paper, we report from a 

collaboration with a teacher aiming to develop and implement teaching resources, in which students 

are introduced to PS tasks that integrate CT and mathematics. Based on these experiences, we seek 

to answer the following research question: How can we characterize the notion of problem handling 

in the context of programming and CT in the mathematics classroom? 

Background 

Our work is conducted in Denmark, where CT was included in the compulsory school curriculum as 

an experimental subject in a pilot project that ran from 2018–2022. During this period, 46 schools 

across Denmark implemented a new subject called technology comprehension (TC). TC consisted of 

four main competency areas: digital empowerment, digital design and design processes, 

computational thinking and technological agency. A key idea in the pilot project was to gain 

experiences with the TC subject via systematic evaluations and to inform a near-future national scale 

implementation on these insights. A part of gaining these insights consisted in trying out two different 

implementation strategies: implementing TC as a subject in its own right and as integrated into 

existing subjects, here among mathematics. Both implementation strategies involved developing a 

new curriculum and developing teaching resources that could support the concerned teachers in 

teaching the new TC content. The Danish mathematics curriculum is organized into four competence 
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areas: mathematical competencies (Niss & Højgaard, 2019) and subject-matter areas, numbers and 

algebra, geometry and measures, and probability and statistics. Both strategies should address the 

same curriculum components. Hence, to integrate TC into existing subjects, the individual 

competence areas of the curriculum for TC, as a subject in its own right, were to be distributed among 

the subjects in which TC should be integrated. In the case of mathematics, six TC components are 

integrated into mathematics: digital design and design processes; modeling; programming; data, 

algorithms and structures; user studies and redesign; and computer systems. 

In our earlier work, we observed that the new TC competence and subject-matter areas were added 

to the mathematics curriculum without explicitly relating it to the existing mathematical competencies 

and subject-matter areas (Tamborg et al., 2022). Despite the potential synergies between CT and 

mathematical PS, relations between these areas were thus not established at the curricular level. Two 

additional preliminary results are worth mentioning in this respect. First, problem handling is not 

invoked in any of the available resources that were developed as part of the strategy of integrating 

programming and CT into mathematics teaching (Elicer & Tamborg, 2023). Second, the mathematics 

teacher with whom we collaborated to design a task strongly emphasized the necessity for students 

to own (delineate and pose) the computational problem (Elicer et al., 2022). Therefore, problem 

handling became a focus point in the classroom intervention that followed, and it is the empirical 

anchor for our theoretical contribution. 

Empirical basis 

Our analysis draws on the development and subsequent implementation of a mathematical problem-

solving task that involved CT. We developed the task on the basis of a combination of insights from 

research literature and refined it through a systematic collaboration with an experienced mathematics 

teacher over the course of several months. This teacher also implemented the task in a 6th-grade class 

of 18 students. The classroom intervention consisted of three 90-minute sessions that took place on the 

spring of 2022. The task concerned geometry, and the students were to experience this mathematical 

topic and to engage in problem handling related to it in the widely known block programming 

environment called Scratch. The first session mainly introduced the students to Scratch, so that they 

were acquainted with navigating this environment. In the second session, students were asked to 

program different regular polygons in Scratch and explore the relation between the number of sides and 

the corresponding turning angles (cf. Elicer et al., 2022). In the third session, students were asked to 

draw a skyline of their choice by applying their insights gained from experimenting with polygons 

(angles and side lengths) in Scratch. In our analysis of the characteristics of problem tackling in the 

context of programming and CT in the mathematics classroom, we mainly draw on the tasks in sessions 

two and three as they were implemented by the teacher and carried out by the students in the classroom. 

We collected data on these matters via participant classroom interventions, which was documented by 

fieldnotes and collected student products (such as skylines drawn by students). 

Characterizing problem handling 

Based on the empirical foundation, we identified three main traits that characterize problem handling 

in the context of CT-embedded mathematics education. These consist of the disciplinary nature of the 

problem (mathematical, computational or otherwise), the ownership of the problem (who poses it), and 

the transferability of solution strategies. In what follows, we briefly define each of these issues, illustrate 

them by selected episodes of our empirical basis, and relate them to the existing literature. 
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Disciplinary nature of the problem 

The first issue concerns the disciplinary nature of the problem at hand, which has several components. 

That is, the first question is which domain of knowledge the problem is coming from. Is it a 

mathematical problem solved by computational means or vice versa? In principle, our design decision 

was proposing a problem whose disciplinary nature is blended. 

In the aforementioned task, figuring out the pattern or a general expression of the internal or external 

angle of any given regular polygon is a mathematical problem in the sense of Niss and Højgaard 

(2019). First, it is a purely geometrical problem and not an extra-mathematical one. If any modeling 

is involved, it is that of modeling a geometrical situation into algebraic expressions. Second, its 

solution does not result from applying rutinary procedures. One possible approach that would lead to 

such an expression is realizing that any polygon of n sides can be subdivided into n – 2 triangles, each 

with a sum of internal angles of 180°. Since the polygon is regular, the internal angle results from 

dividing this total sum of angles by n: 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑛𝑔𝑙𝑒  =  
180°(𝑛 − 2)

𝑛
= 180° −

360°

𝑛
,  𝑛 ≥ 3. 

However, the task is stated mostly as a computational problem. Students should command the sprite 

to draw any given regular polygon. Its solution (Figure 1) requires generalizing the number of sides 

as a variable, applying a repeat loop and implementing a corresponding turning angle. Moreover, the 

thought experiment for such an expression is rather different than the mathematical approach. One 

imagines a sprite walking a full circle of a low resolution. As such, the total turn of 360° is divided 

into the number of sides. The one mathematical operation involved is therefore a division. 

 

Figure 1: Scratch script section for a generalized regular polygon 

Students tackled this problem through an open-ended exploration. A group of students use a repeat-

10 loop turning 15 degrees, producing the arch of a low-resolution circle. 

Andy:  It has to be repeated 25 times. 

Teacher: Why, Sam? 

Sam: If we say [repeat] 10 once more, then it is almost made, then a small part is missing. 

And then, [we repeat] 5 [more] to make it. 

Teacher: You think that happy mouth could become a circle maybe, or what? 

Hector: Is it 24 times? 

Teacher:  Why? 

Hector: Because then it divides up into 360 [degrees]. 
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Hector’s discovery makes use of a mathematical operation to solve a computational problem. They 

are not exploring or visualizing new mathematical ideas when using the digital tool. From an MDC 

perspective, students should take advantage of the tool’s pragmatic and epistemic values (Artigue, 

2002; Geraniou & Jankvist, 2019). For these students, the computational tool has mostly a pragmatic 

than epistemic value for the sake of mathematics learning. Programming served as a way of skipping 

learning about internal angles to solve a graphical problem. 

The third part of the teaching sequence, that of drawing skylines in Scratch, exacerbates the 

disciplinary issue. The teacher’s ambition was that students could pick their own city skyline to draw, 

making use of what they learned about coding, angles and polygons. They began by drawing with 

pen and paper, adding a sketch of how they would instruct Scratch to draw it. Figure 2 displays one 

such case, where a student engaged significantly in drawing the Statue of Liberty, and sketched 

unprecise instructions on its coding. These commands, at most, include directions such as “up” and 

“turn,” without even specifying angles. 

 

Figure 2: A student’s sketch of the Statue of Liberty 

For the student, this part of the task presents an amusing graphical challenge, to be eventually solved 

by computational means. Her mathematical knowledge is not evident, despite the experience with the 

polygons part of the task. 

Overall, the empirical basis displays three domains: mathematics, computational thinking, and 

graphical design or technical drawing. In their recent study, Sand et al. (2022) devise this triad as 

having three nodes: mathematics, code and output, and its interconnections as acts of modeling, yet 

another essential aspect of computational thinking (Ejsing-Duun et al., 2021). The teaching unit has 
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the potential to confront students to solve a geometrical abstraction problem (mathematics) by 

modeling it as the trajectory described by a sprite on a screen (output), commanded by a block-based 

program (code). 

In the context of strictly mathematical competencies, Niss and Højgaard (2019, p. 15) draw a line 

stating that “the problem handling competency deals with intra-mathematical problems only”. 

However, they acknowledge the interdisciplinary issue: 

It may happen that a problem has arisen from extra-mathematical needs or domains, i.e., by 

way of mathematical modeling. However, it is only problems in their mathematical 

instantiations that are covered by this competency. (pp. 15–16) 

This is consistent with Kallia et al.’s (2021) view on CT in mathematics classrooms as a structured 

approach to solving mathematical problems, with (computational) modeling among the thinking 

processes to go about them. 

Therefore, we argue that a path consistent with the literature is to use effective computational 

modeling of mathematical problems that may be anchored to an external output. In this sense, the 

polygon task has the potential of exploiting this aspect. The skyline task, particularly in the case of 

the student’s version of the Statue of Liberty, fails to engage in handling a mathematical problem. 

This bypass is due, in part, to the freedom given to the students in choosing their own skylines of 

reference to code, which leads us to the next aspect. 

Ownership of the problem 

The second issue regards ownership in the problem formulation. The question is, then: whose problem 

is it? This aspect may refer to the meaning of a problem, as opposed to any other procedural exercise. 

Niss and Højgaard (2011) referred to the meaning of a problem being relative to the person facing it, 

and we tackled it in the previous section, based on the procedural nature of the general expression for 

the angle. More importantly, we are concerned about the ability to pose—and not only solve—

problems. 

Our original formulation of the task was produced so that it avoided difficulties for the students 

(Elicer et al., 2022). In particular, we included a working script as point of departure and a research-

based sequence of polygons in increasing order of difficulty: square, triangle, hexagon, pentagon. 

The teacher challenged this approach during the pre-intervention interview: 

Teacher:    It is easy to do it. But (…) I would start just with the pen and then tell the children: 

“how can you code a triangle?” So, instead of giving the code from the start, the 

first thing is to let the children make it themselves. Maybe they can do it; maybe 

they can’t do it. But they need to understand what we are doing now. Instead of just 

having the code, [let’s ask] “how can we do this?”, “what is the problem?”, “what 

do we need to know?”, “what kind of code do we need to do to code a triangle?” 

Since the task’s first iterations, the teacher insisted on framing the problems so that students put their 

motivation and interests in the problem to solve, which led to the skyline part of the task. She made 

this point very clear during the pre-intervention interview: 

Teacher: They can program it into something that gives meaning in their lives. If they like 

football, they can do it in football. If they like fairy tales, they can do it in fairy 
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tales. I don’t care. It is their digital production. It is their expression. And that is 

important. 

The students’ ability to pose problems is then exercised by allowing them to make choices in the 

graphical characteristics and sequence of polygons, as well as the skyline of reference. In the first 

part of the task, the choices do no harm the learning goal of finding a pattern in the angles. In the 

second part, the experience varied. Another student chose to code the Brandenburg Tower in Berlin. 

In Figure 3, one can see his sketch, clear steps to code it, and its successful implementation in Scratch. 

During the post-intervention interview, the teacher emphasized that his ownership of the problem 

played a role in his success: 

Teacher: He set [out] to make his code and he could do it exactly as he has done on the paper 

[with the] Brandenburg Tower in Berlin. He has been there, and it was important 

for him to do it in a childish way (…) He has had a good experience and then he 

used that into the coding and the math. 

In a way, the teacher doubled down on her approach to let students pose their own problems. 

However, as shown in Figure 2, these choices can lead to disregarding the possibility to solving them 

through the available mathematical and computational tools. 

  

Figure 3: A student’s sketch (left) and coding (right) of the Brandenburg Tower 

Within the computational problem solving practices branch of their taxonomy, Weintrop et al. (2016) 

begin with preparing problems for computational solutions, admitting that “while some problems 

naturally lend themselves to computational solutions, more often, problems must be reframed” (p. 

138). In the skyline task, the teaching takeaway is that the degree of freedom given to students should 

consider the possibility to make abstractions and models (Ejsing-Duun et al., 2021) suitable for 

computational solutions, i.e., straight lines, polygonal figures and circle arcs. In that sense, we 

propose that Kallia et al.’s (2021, p. 21) long list of thinking processes involved in solving (sic) 

mathematical problems— “(not limited to) abstraction, decomposition, pattern recognition, 

algorithmic thinking, modeling, logical and analytical thinking, generalization and evaluation of 

solutions and strategies”—should be split. Abstraction, decomposition and modeling are more related 

to delineating a problem, while pattern recognition, debugging and evaluation are rather connected 

to its solution. The role of CT as a set of ways of thinking when posing mathematical problems should 

then be carefully distinguished and focused. 
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Transferability 

The third aspect is that CT is meant to provide solution strategies transferable to another person, 

machine and even discipline (Kallia et al., 2021). This feature is a consequence of CT’s broad scope 

that proponents have highlighted, i.e., its potential to solve problems in a wide variety of contexts (Li 

et al., 2020; Weintrop et al., 2016; Wing, 2006). This aim of building general problem-solving 

strategies is common to mathematics education, and there is a risk of mathematics losing that territory, 

as Djorgovski (2005, p. 130) proposes: 

Another, mildly provocative idea, is that applied computer science is now playing the role 

which mathematics did from the 17th through the 20th centuries: providing an orderly, formal 

framework and exploratory apparatus for other sciences. 

Back into the classroom experience, the issue of transferability is most illustrated by the use of two 

solution approaches to the polygon problem. After coding different polygons in Scratch, the teacher 

asked students to open GeoGebra and replicate the construction of different polygons. GeoGebra has 

features to draw regular polygons and measure their angles easily. However, the angles involved are 

not the same as the turning angles used in the Scratch solution, as one can see in Figure 4 regarding 

the heptagon. On the left side, the turning angle in Scratch represents the external angle; on the right 

side, GeoGebra is displaying the internal angles. 

  

Figure 4: Scratch (left) and GeoGebra (right) approaches to a heptagon 

These angles are, of course, supplementary, i.e., they add up to 180°. However, the issue becomes 

less equivalent when it comes to finding a pattern leading to a general expression for these angles. 

For this purpose, the teacher asked students to collect the angles and sums of angles on a shared Excel 

sheet (Figure 5). Students not only struggle more in finding such a pattern in GeoGebra, but they do 

also not find the point of this addition to the task. As described in the excerpt involving Danny and 

Hector, it makes sense for them to visualize the (external) angle of a polygon as a subdivision of 

circular trajectory that adds up to 360°. The meaning of an angle in a CT environment is the preferred 

provider of a solution strategy over Euclidean geometry. Transferring or translating these approaches 

is possible but seems unnecessary. 
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Figure 5: Excel screenshot with comparison between Scratch and GeoGebra 

In the early years of CT as a pedagogical concept, Papert (1980) refrained from framing it as a new 

approach to learn the already established mathematics syllabus. “Euclid’s is a logical style. Descartes’ 

is an algebraic style. Turtle geometry is a computational style of geometry” (p. 55). CT was framed 

as a new and versatile means for students to produce alternative mathematical ideas. 

The lesson is that the transfer between approaches, be them computer languages, digital tools, 

contexts and disciplines, must consider that each domain carries its own codings and registers. This 

concern is consistent with other empirical studies such as Cui et al.’s (2021), wherein primary school 

students’ main challenges stem from the differences between CT and mathematical thinking. These 

must be accounted for when aiming for developing modular solutions with an “ability to be easily 

reused, repurposed, and debugged” (Weintrop et al., 2016, p. 139). Otherwise, it would contradict the 

view of a CT as a robust strategy that handles problems “so that they do not create new problems” 

(Ejsing-Duun et al., 2021, p. 426). 

Conclusion 

Mathematical PS is commonly framed as a main feature of mathematical activity (Schoenfeld, 1985), 

becoming both a means to learn mathematical notions (Cai, 2010) and a goal in itself such as the 

problem handling competency (Niss & Højgaard, 2011, 2019). The widespread inclusion of digital 

technologies is consistent with their subordination to aid mathematical problem solving (Geraniou & 

Jankvist, 2019). However, we have argued that CT, another construct in a digitalized society to enter 

the mathematics education agenda, may play a critical role in dealing with mathematical problem 

handling. 

Based on definitions from the literature and anchored in an empirical basis, we propose that a CT-

driven mathematical problem handling competency should entail, at least the following abilities: 

• To solve computational and mathematical problems with, respectively, mathematical and 

computational solution strategies through effective modeling. Problems may arise from extra-

mathematical contexts (output), but this competency is displayed when it leads to a non-

rutinary mathematical challenge (Niss & Højgaard, 2011). 

• To pose own real-life inquiries as computational and mathematical problems, with an 

awareness of which elements can be selected (abstraction) and approached by computational 

solution strategies (modeling). This aspect requires a focus on CT processes (Kallia et al., 

2021) that aid the formulation of problems into computational terms. 
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• To judge which elements of the solution strategies can be transferable, and seizing 

ambivalences as epistemic obstacles for the learning of mathematics and CT. This element is 

connected to the problem of CT emerging from a different domain—computer science 

(Papert, 1980)—, the necessity of building a tolerance for ambiguity (Pérez, 2018), and the 

opportunities to reuse and repurpose computational solution strategies that do not create new 

problems (Weintrop et al., 2016; Ejsing-Duun et al., 2021) 

Our case study and our conclusions engage with what may be possible from a competence standpoint. 

As Niss and Højgaard (2019, p. 21) acknowledge, “full mastery of a competency is a ‘point to 

infinity’”. We believe these three points can provide guidance toward designing learning 

environments and assessment activities that showcase what students can, in fact, do. 
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Fostering Computational Thinking: The role of understanding 

mathematical concepts in the context of debugging computer codes 

Jacques Kamba1 and Viktor Freiman1 

 

In New Brunswick, several schools offer opportunities for students to learn engineering design 

associated with coding and physical computing. However, there appears to be a lack of effective 

pedagogical interventions to support the development of skills associated with debugging among 

these students. This article shares the first results of a doctoral study, still in progress, aiming to 

present the state of the problem related to students’ debugging practices during the realization of 

various creative projects that involve coding with the use various physical computing devices. It 

specifically reflects on the role of understanding mathematical concepts while debugging code errors 

when creating engineering artifacts in a school-based STEM lab. 

Keywords: Debugging, coding, physical computing devices (PCD), mathematical concepts, 

Computational Thinking (CT). 

 

Context of the study  

In the past decades, an increasing attention of educators has been directed to attracting more K-12 

students to disciplines of science, technology, engineering and mathematics (STEM). Among a 

variety of learning experiences serving this purpose, involving students in interdisciplinary projects 

integrating designing artefacts, computer coding, and physical computing devices (PCD) was 

associated to the development of Computational Thinking (CT) as a novel approach to solving 

problems (Wing, 2006) in an authentic/real-world context (Jona et al., 2014). One such project was a 

part of a case study of school makerspaces and other types of making activities conducted by the 

CompeTI.CA (Compétences en TIC en Atlantique/ICT Competencies in the Atlantic Canada) 

research team in several schools in New Brunswick (NB), Canada (Freiman, 2020). This article 

reports data from this study featuring a group of Grade 4 students from one primary (K-5) school. 

The group was invited to work on a science project investigating animals. Students had to search for 

information about an animal and make a presentation to sensibilize their peers, parents, and members 

of their community to the issues of protection and conservation of species, some of which being 

endangered. Part of the project was a CT assignment for which the students built a physical model of 

the animal with some parts of its body making rotating motion by using a micro:bit-operated servo 

motor with an integrated computer code.  

During the design of their prototypes, students faced different issues related to building a physical 

model, computer coding, transferring it to a micro:bit, and then incorporating a programmed PCD 

into their model to ensure that selected parts make an appropriate movement. In this article, we are 

interested in how young learners attempted to debug their codes, while resolving issues relating to 

PCD and its installation on their physical models. We will then attempt to relate our findings to the 
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debugging as part of the development of CT while looking into possible connections to mathematical 

concepts and applications, as well as higher-order problem-solving skills and processes. Debugging 

processes and the undertaking of related decision-making are not yet sufficiently clarified in the 

literature on STEM education (LeBlanc et al., 2022). The following section describes the context of 

the study. Then, we briefly introduce key theoretical concepts underlying the study followed by the 

task description, methods, and partial results related to debugging codes. 

In New Brunswick (NB), Canada, the last decade has been marked by a noticeable enthusiasm among 

some teachers to engage students in an integrated STEM learning in school makerspaces while 

introducing them to a variety of cutting-edge technologies (Freiman, 2020). In order to help teachers 

in setting up making activities to stimulate students’ interest in STEM, several not-for-profit or 

charity associations, such as Brilliant Labs (www.brilliantlabs.ca) or Place aux compétences 

(https://pacnb.org/fr/) have been providing teachers with different resources (materials, including 

latest technologies, and on-site assistance). There are a variety of forms and settings in which making 

activities are conducted. Some teachers let students freely choose a project according to their interests. 

Others would integrate making into a more formal, subject-related teaching, as was the case in our 

study where the teacher decided to incorporate computer coding and physical computing technology-

related, design-based projects suggested by the provincial primary science curriculum. 

Our research team, in collaboration with Brilliant Labs, has been exploring students’ learning in 

makerspaces from different perspectives. These include creativity development (Freiman & 

Robichaud, 2020; Léger, 2022), different approaches to problem-solving such as tinkering (Furlong 

& Léger, 2022), and exploration of various technologies such as 3D-printing (Freiman & Kamba, 

2020). A recent paper by LeBlanc et al. (2022) highlights a dialectic interaction between hands-on 

and mind-on learning opportunities that making activities might provide for applying mathematical 

concepts and operations, while targeting higher-order mathematical processes such as reasoning. In 

this context, we identify a lack of research on the role mathematical connections might play during 

processes of debugging, as part of CT practices. Such processes are to be developed in a variety of 

design activities going beyond programming (Brennan & Resnick, 2012), which we extend toward a 

process of designing and testing a physical computing system viewed as a whole. In the next section, 

we discuss this process and possible mathematical connections in more details. 

Conceptual framework 

In relation to the problem of this study, the conceptual framework clarifies different stages of an 

engineering design process into which a construction of a physical computing system is embedded, 

as well as their connections to CT, debugging and mathematics.  

Engineering design process 

When working on their prototypes, students become engaged in a design thinking cycle as part of “a 

human-centered approach that relies on innovation, collaboration and creativity to solve a multitude 

of social or environmental issues” (Pruneau et al., 2021 with reference to IDEO.org, 2012). Each 

cycle usually consists of several stages, namely (1) observation-inspiration, (2) definition-synthesis, 

(3) ideation, (4) prototyping, (5) testing and (6) communication. Adapted to the context of our 

study, stages 1-2-3 are combined in a Step 1 (Figure 1) where students having already built a 

physical model of their animal, begin their process of design of a physical computing system by 
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choosing a part of the animal’s body to be dynamized (observation-inspiration) and imagining how 

this part would move and how it could be automatized (definition-synthesis-ideation). As the 

second step (stage 4), a prototype of a physical computing system is built including coding, 

transferring to a PCD, and integrating it into a prototype. It is followed by the stage of testing (Step 

3), and public presentation of the project (Step 4-stage 6). When going through the process of 

designing and testing their prototypes, students can face a number of code errors and issues related 

to PCD that would require debugging.  

 

Figure 1: A 4-step design process 

Integration of PCD in the design process: Interconnection between physical 

model, physical computing devices, and computer coding  

Physical computing (also called computational making) frames students’ projects as an approach to 

designing real‐world (physical) interactive objects by implementing knowledge from computer 

science, electrical engineering, and related disciplines. This is made possible through the use of hard 

(LEDs, sensors, servos) and software components (source code) (Juškevičienė et al., 2021).  

Juškevičienė et al. also emphasize the role of physical computing in the development of higher mental 

functions as physical computing affords humans ways to co-construct their environments thus 

mediating coordination of social and intellectual functions to support learning. In our study, a physical 

computing system built by students can be represented by the following schema adapted from Jang 

and Kim’s (2016) framework of interworking between physical models, digital models, and physical 

computing (Figure 2). In this system, a servo motor controlled by a microprocessor micro:bit running 

a program (code) produces a desired rotating motion when integrated into a physical model. A virtual 

component of the system incorporates a code that students created using a MakeCode platform with 
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an option to use a JavaScript or a block-based language, more suitable for young learners, to describe 

the desired algorithm of rotational movement. The codes were then transferred to a PCD (micro:bit) 

to which a servo motor was then connected. A data flow was nonlinear providing different types of 

feedback about its functioning. This is where several types of issues can be detected such as problems 

with the code, with PCD, or with the physical model. Dealing with these issues engages students into 

a debugging practice as part of a CT development.   

 

 

 

 

 

 

 

 

 

Figure 2: Interworking between physical (moving part of an animal) and digital models (code) by 

means of PCD (micro:bit) (adapted from Jang & Kim, 2016) 

CT and debugging practice  

Computational Thinking (CT) is still an evolving concept that is articulated by a diversity of 

definitions and aspects (Brennan & Resnick, 2012). In the 1970-80s, Papert provided the LOGO-

based programming. This was used as a tool not only to support mathematically rich activities but 

also to engage “novice and expert, young and old” in the construction of educationally powerful 

computational environments that will provide alternatives to traditional classrooms and traditional 

instruction” (p. 182). The term CT was reinvigorated by Wing in 2006, as a “fundamental skill for 

everyone,” along with reading, writing, and arithmetic, to be added to “every child’s analytical 

ability,” and as a way of “solving problems, designing systems, and understanding human behavior, 

by drawing on the concepts fundamental to computer science” (Wing, 2006, p. 33). Wing (2008) 

identified abstraction, logical thinking, algorithmic thinking, innovation, and creativity as central 

elements to the constitution of CT. For Lee et al. (2020), CT “is the thought process involved in 

formulating problems such that their solutions can be expressed as computational steps or algorithms 

to be carried out by a computer” (p. 1).  

In their work, Brennan and Resnick (2012) have proposed a CT framework consisting of three 

dimensions: computational concepts–the common concepts used in programming such as loops, 

events, conditionals, repetition; computational practices, the process of programming such as testing 

and debugging, reusing and remixing, abstracting and modularizing, and computational perspectives, 

students’ understandings of themselves and the technological world. Within a larger scope, Shute et 

al. (2017) conducted a research review on definitions of CT in different disciplines and from different 

perspectives. They came up with their own transdisciplinary view of CT as “the conceptual 
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foundation required to solve problems effectively and efficiently (i.e., algorithmically, with or 

without the assistance of computers) with solutions that are reusable in different contexts” (p. 151).  

In connection to engaging learners with physical computing, Juškevičienė et al. (2021) have 

emphasized that “artifact development, idea modeling and experimenting with tasks (mini projects)” 

help students to focus on “practical experiences of CT to think computationally” (p. 178). Indeed, 

anchored in Papert’s constructionism, several authors highlight benefits of “physicality as an essential 

link between children’s embodied experiences in the world and the new universe of computer code” 

(Horn & Bers, 2019, p. 663). Moreover, the authors argue that “learning experiences that make use 

of physical properties of materials, movement through space, and relationships between objects and 

people might more successfully reference sensorimotor schema that form the foundation for much of 

abstract thought” (p. 668). This type of experience creates, in turn, new perspectives on debugging.  

Although CT definitions and structures vary and are still subject to debate among authors (Denning, 

2017; English, 2017; Shute et al., 2017), most of them include some aspects of debugging as an 

essential practice for the development of CT. As is it in the case of CT, debugging is also defined in 

many ways and from different perspectives. From a learning to code perspective, Heikkilä and 

Mannila (2018) define debugging as “a problem-solving activity, which involves exploration, 

observation, communication and reflection” (p. 2). In this definition, debugging is presented as a 

process of correcting code errors and solving problems with digital tools, supported by reflection, 

exchanges with others and exploration. Vasconcelos et al. (2020) point out that debugging is also 

known as troubleshooting. They defined it “as the process of identifying error(s) in a program and 

using problem-solving strategies to fix it” (p. 64). Debugging is different from other approaches such 

as trial and error, as it is a systematic and thoughtful process in which students identify and fix a code 

error by applying a corrective approach and testing hypotheses until the error is fixed (Vasconcelos 

et al., 2020). 

It is also a process of figuring out why a program is not working or not behaving as expected. While 

a person debugs a problem, they can identify the issue, test the program to isolate the source of the 

error, and reproduce the problem so that potential solutions can be tested reliably (Weintrop et al., 

2016). McCauley et al. (2008) argue that debugging is a process that requires some steps and 

approaches to understand the error and correct it.  Among the different approaches used by young 

children to debug a code error, Bennie (2020) and Deliema et al. (2019) have proposed the approach 

of requesting assistance to get some help, advice or clues from a teacher, a resource person, or a peer 

to debug the program. On this approach, Brennan and Resnick (2012) point out that interactions with 

the teacher or with peers allow young students to obtain information needed to debug their codes.  

In a context where learning to code is integrated into a design of physical computing systems, 

Hennessy et al. (2023) defined debugging as “a situated inquiry where students develop an iterative 

process of understanding as they tinker with the software and hardware, leading to developing 

perspectives on the system as a whole” (p. 6). In the context of our study, this approach can be used 

not only to help students to debug their codes, but also to solve problems related to the PCD and 

physical models (prototypes) with integrated computing devices (in our case, micro:bit connected to 

servo motor placed in a moving part of the animal’s body). 
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Mathematical connections related to CT and debugging 

By transforming a classroom into a project-based space for making, the design thinking process allows 

young students not only to review different mathematical concepts, such as measurement, scale and 

area, but also learn how they can be applied to solving real-world problems (Kim et al., 2013).  

According to the literature, there seems to be a strong connection between CT and mathematical 

thinking. Shute et al. (2017) explain that “mathematical thinking consists of three parts: beliefs about 

mathematics, problem-solving processes, and justification for solutions” (p. 4). In its turn, 

computation, along with CT, refers to computational models as mathematical abstractions where the 

thought process is represented as computational steps and algorithms. Hence, algorithms are one of 

key elements explicitly relating two disciplines, mathematics and computer science (Aho, 2012), 

which is viewed as succession of actions arranged in a well-defined order to perform a task or solve 

a problem (Nguyen, 2005). Already in 1960s-80s, an emphasis of computer scientists was put on a 

concept of algorithm as a “whole range of concepts dealing with well-defined processes, including 

the structure of data that is being acted upon as well as the structure of the sequence of operations 

being performed…by machines” (Knuth, 1985, p. 170).  

Knuth also refers to the Soviet-bound conception of cybernetic (Kibernetika) and its relation the 

control of a (computational) process or applied mathematics (Prikladnaia Matematika) thus 

“emphasizing the utility of the subject and its ties to mathematics in general” (Knuth, 1985, p. 170). 

In our study, algorithms were not explicitly taught to the students. When building their physical 

computing systems based on interactions between physical models, PCD, and computer program 

(codes), children have rather intuitively dealt with algorithms through a variety of representations of 

desired movements as objects (parts of their physical models), computing devices (servo motors and 

micro:bits) to control and execute the movements, and a virtual code (MakeCode blocks of codes), 

as we will describe in the next section.  

Introducing young students into physical and virtual computing emphasizes yet another possible 

connection of CT to mathematics, also documented in the literature is related to spatial explorations 

and more specifically, geometry. For instance, in his article entitled “An exploration in the space of 

mathematics education,” Papert (1996) explored CT in relation to children’s learning of mathematics, 

in particular geometry. “The goal is to use Computational Thinking to forge ideas that are at least as 

“explicative” as the Euclid-like constructions […] but more accessible and more powerful” (p. 13). 

Already in the 1980s, Battista and Clements (1988) argued that elementary geometry should be the 

“study of objects, motions and relationships” whereas the primary goal is “the development of 

students’ intuition and knowledge about their spatial environment” (p. 11). In this respect, according 

to the authors, introducing computers and programming, at that time using Papert’s Logo, was 

considered as a meaningful tool to facilitate translation of children’s intuition into a more precise 

language of commands where the focus would be put on geometric concepts and their properties (like 

conceptualizing a rectangle as a shape with angles of 90°) (Battista & Clements, 1988 with reference 

to Papert, 1980). This vision is anchored in Piagetian insight about pertinence of physical actions.  

Indeed, according to Piaget and Inhelder (1967, cited in Battista and Clements, 1988), the child “can 

only ‘abstract’...the idea of a straight line from the action of following by hand or eye without 

changing direction, and the idea of an angle from two intersecting movements” (p. 14).  In the 21st 

century classroom, this perspective has only gained in importance in context of CT development 
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using modern programming tools (e.g., Scratch) and devices (e.g., EV3 robots) where the emergence 

of spatial reasoning is stimulated by simultaneous development of enactive–iconic–symbolic 

representations (Francis et al., 2016 with reference to Bruner et al., 1966). In a similar way, Ramey 

et al. (2018) emphasize specific interactions between people, tools, and representations through which 

spatial thinking is enacted and developed to trace specific spatial representations as they traverse 

across representational media, to understand how spatial understandings are distributed to or co-

constructed by learners and their socio-material context, such as an engineering design.  

Finally, recent studies of CT development as a context to enriching mathematics teaching and learning, 

in connection to Chevaillard’s praxis-logos didactical interactions when transposing knowledge have 

allowed to identify possible ways to reinforce early algebraic thinking while working with computer 

codes, for example, in Scratch (Kilhamn et al., 2022). The authors have specifically analyzed how the 

coding task that involves variables (e.g., changing values of angles in ‘turn’ blocks) could be 

didactically transposed to make ‘algebra logos’ explicit (Chevaillard, 2006; Kilhamn et al., 2022).  

From the mathematical perspective, several CT thinking skills, such as sequencing (algorithms), 

modularity, and debugging could be considered ‘foundational’ to mathematical understanding, already 

at a very young age (4-5 years old) (Lavigne et al., 2020). The authors argue that when children are 

engaged in the debugging (which means identify the problem, break it down into smaller parts, and test 

solutions), they can use mathematical knowledge (such as using a pattern, counting, or comparing) to 

correct the error (Lavigne et al., 2020). In their turn, according to Kilhamn et al. (2021), teachers believe 

the debugging practice can encourage students to “see failure as a natural part of a problem-solving 

process” which makes programming activities beneficial for mathematics learning (p. 174). 

With this theoretical perspective in mind, we are particularly interested in students’ conceptualization 

of rotational movement of a servo motor as a focus of designing, testing, and debugging their 

computerized system.  In this respect, we reviewed a few studies that may potentially reveal 

connections between mathematics learning and debugging. For instance, Shumway et al. (2021, p. 

21) have studied mathematical concepts relevant to the process of debugging. They have shown that 

the mathematical concepts of counting, spatial reasoning, units of measurement and operations 

knowledge have emerged as helping or hindering forces when students debugged programs. Also, 

Rich et al. (2019) showed how engaging students in a debugging cycle as they observe, hypothesize, 

modify, and test, can create a fruitful context to mutually support mathematics learning and CT 

development in an integrated way. In a similar way, Kilhamn et al. (2021) have studied the potential 

of computer programming, when integrated into mathematics curriculum, to support exploring 

problems and mathematical concepts.   

Guidelines of the methodological framework 

Our study is situated in a qualitative and exploratory epistemological posture, focused more 

specifically on an inductive interpretative approach. This paper describes a case which is a part of a 

larger doctoral project conducted by the first author based on grounded theory (GT), as described by 

Luckerhoff and Guillemette (2012). A method of case study, as advocated by Creswell and Poth 

(2018) aimed at better understanding the debugging process followed by NB students in the context 

of digital creation (incorporating coding and PCD) in the classroom. Two cases are featured: (1) 

Grade 4 students working on designing an animated animal model with micro:bit and servo motor 

integrated in a part of the model making rotational movements; and (2) Grade 4 students creating an 
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interactive story book incorporating sounds programmed using Scratch and Makey Makey. As 

researchers, we were interested in their debugging process demonstrated during the whole design 

process (Figures 1 and 2). In this paper, we present some partial data of one team from Case 1 (animal 

model) to learn how students are solving a coding problem to make a part of the animal move. The 

analysis process applied in the context of this article is the same as planned for all the data from the 

doctoral study, i.e., an analytical process of codification and categorization (Paillé, 1994) taken from 

video recordings, interviews with students and researcher's notes taken during field observations. The 

data collection has been reviewed and approved by the university research ethics board. All 

participating students have submitted a form signed by their parents consented to their child’s 

participation in the study.   

Partial results of the study: Case 1, team 1 

During the design process, we learned about the work done by the students from Grade 4 class. The 

students were grouped into a small team of three people. They designed and created a model to solve 

an ecological problem about an endangered animal, named spider monkey. One part of this model 

(the tail) was supposed to be energized to exercise a rotational 180-degree movement using a 

micro:bit and a servo motor. The symbols S1, S2, S3 identify each student on the team, the symbol 

RS represents the researcher, the symbol TC represents the teacher, and the symbol RP represents the 

resource person (a mentor from a partnership organization helping teachers and students to realize 

their models, especially in the coding part).  

First, the students seemed to be well aware of the design process and could verbalize their ideas. One 

of the students (S1) showed the part of the model that was supposed to make movements: “But it’s 

his tail that will move (the tail of the model).” Another student gave more details on the tools to be 

used to make the tail rotate: “Hey, the micro:bit, the helicopter technology (the servomotor propellers, 

JK and VF) that will do that on their own....” They have established the location and taken measures 

to achieve the attachment of the tail to the model as shown in Figure 3 below. 

 

Figure 3: Animal model, the location of the tail 

The below conversation with the students helps to learn about their representation of the whole design 

process and the role of technology in it. 

RS: How is it going to move? What will move? Is it the mouth, the head or what is it? 

S2: It’s the tail. We haven’t glued it yet to put the technology in it. Then, there we will 

glue it (She shows the place where the tail would be glued.) […]. 

S1: As we told you, we are going to make technology move it. 

RS: Are you going to drill down here to put in the tail? 
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S1: We’re just going to stick it, we're going to put the technology (micro:bit ) in it. 

During the conversation, one of the students was making gestures with one hand (red arrow) to show 

their intuitive algorithm ideas of movement of rotation as shown in the table below (Table 1). 

Indeed, students’ intuitive understanding of angles, movement, and direction was not accompanied 

using the relevant mathematical terms but an understanding of what needs to happen was apparent.  

Afterwards, using a MakeCode coding platform, students attempted to create the sequences of the 

computer code (blocks) operating the movement of their animal’s tail to be executed by the servo 

motor controlled by the micro:bit. When students were trying to create a code representing this 

movement, their first version of the program contained three blocks of code: an activation block (once 

you press an A button on the micro:bit, the program will be activated), a block for setting up an initial 

position of the servo horn to 180° (servo write pin P0 to 180), and the pause block (pause 100 ms), 

which must be introduced between each rotational movement of the servo motor, as shown in Figure 

4. Interestingly, when testing their program, students realized that the program movement did not 

correspond to their intuitive idea of the algorithm, which could be due to a code error. One of the 

students shared with us their observation: 

S1: Usually when we press A, it works; there, it didn’t work anymore. 

Seeing that the servo was not moving at all, students had to identify several incorrect/missing parts 

of their code: (1) the first pin block was supposed to set up a value of the angle to 0 degrees; then (2) 

have a second pin block set up to 180 degrees thus controlling the rotational movement of the 

servomotor of 180 degrees (desired rotation); (2) add a loop block to allow the program to repeat the 

rotation movement a desired number of times; (3) increase the duration of the pause to 1 second 

(1000) milliseconds (ms), (the value of 100 ms is not enough to ensure the movement of propeller 

producing a desired angle); (4) insert another block of code for the pause for the return movement, 

then to make sure the movement is repeated several times (loop). So, they started the debugging 

process to fix their program. 
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Table 1: Representation of intuitive algorithm ideas 

Data: The gesture of the hand to represent the 

intuitive algorithm idea 

Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In these three images, student S1 (the hand with 

a red arrow) tries to represent the movement 

algorithm they would like to implement in order 

to allow the micro:bit and servo motor to 

control and to produce a rotational movement 

of the tail. 

 

 

 

According to our observations of this hand 

gesture in the video recording data, the student 

anticipated that the animal’s tail will be rotated 

clockwise in a semicircle, going roughly from 0 

degree to 180 degrees, as shown in the images 

on the left. However, the student did not 

verbalize the precise measurement of the angle 

of rotation of this movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Students’ efforts to code tail movement using Makecode platform 
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When asked how they proceeded to find the error, the students explained that they tried to use little 

tricks, like inserting some (other) ‘small things’ (blocks of codes) while deleting the others: 

RS: How did you go about finding the code error in your program?  

S5: … well, we tried other things that we had, like little things (code blocks), we could 

try other things like, we could remove them……  (If it does not work). 

The approach of ‘trial-and-error’ to review, modify, and delete certain blocks of code as well as the 

‘do-it-yourself’ approach did not allow the students of this team to find the desired solution to the 

code errors. A student S1 makes this confession: 

S1: Because we tried, then it didn’t work, then we tried, we tried, we tried. 

This was a moment where the students decided to turn to the adults in the room, a classroom teacher 

and a technology expert present in the digital fabrication lab, hoping they would find a solution clue 

to the code errors. 

Firstly, the teacher guided the students to reflect, to identify by themselves the errors in code and to 

find a way of correcting them. Presented here is the conversation between the teacher and the students 

about correcting coding errors. 

CT: You have to add others (the two pin code blocks) like this, one (a code block), 

which will be set at 0 degrees and the other at 180 degrees. 

S1: (she adds a new pin code block). 

S1: Well, another one (the code block) like this? 

CT: No…Look, that’s not a (correct) pattern. When X (the name of a student) puts this 

in the right place, what is missing for a correct pattern (desired movement)? 

S1, S2 and S3 (saying simultaneously, after some thinking): A pause. 

CT: Here you must find one block (of code assigning the value) to 0 degrees and one to 

180 degrees, and press button A, to see if it will work. 

S1: (a student has activated the micro:bit simulator button, however the program still 

was not working properly). 

After having guided the students to find solutions to coding errors that occurred in their program, the 

teacher asked the students to think about the need to call on the resource person for possible solutions 

to the remaining code errors. The next exchange took place when the RP (a technology expert) was 

called for further help. One of the students (S2) explained the problem to the resource person: 

S2: This (the propeller) goes to that place (0 degrees), but it doesn’t go back (to the 

initial position).    

The RP has invited students to a whiteboard, trying to explain them the way of thinking and using a 

variety of mathematical concepts relating to distance (of the movement) and its duration; the goal 

was making students understand why 10 ms is not enough to make a distance from the initial position 

to the final position (Figure 5): 
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RP: You know, uhh…I don’t know how I’m going to explain this to you. Let’s say you 

have a distance of 0 up to…, let’s take up to 10 km, okay. It will take a while to get 

like this (time to leave from 0 to 10 km). Let’s say it will take a second…to go from 

0 to 10 km. But you see here (he points to the program). You took 1 hundredth of a 

second (which was, in fact, one tenth, J.K & VF), how many milliseconds does it 

take to make a second? Do you remember? In a second, so…1 second equals 1000 

milliseconds, okay. And there, you said you covered the distance from 0 to 10 km 

in 100 milliseconds. It’s not giving it (propeller) enough time for it to be able to get 

to its full distance, because you’re not giving it enough time to get there. You need 

to give him more time to get to his distance. How long is it?  

 

 

Figure 5: Explaining to students the error code by evoking the concepts of time and distance 

So, knowing that 10 ms gives 1/10 of a second, the students had to figure out the time value to be 

inserted in the code equivalent to 1 sec.  

S1: One second (the time to put in the pause code block) 

PR: We can try to put one second (the PR encouraged students to try inserting this value 

into the ‘pause’ block to see if the program would work.)  

S2: (She has changed the value of the time parameter in the ‘pause’ block to correct the 

code error (Figure 6) and then they tried the program, which finally worked 

correctly). 

 
Figure 6: Changing time variable in pause block 
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Preliminary discussion and conclusion 

Our preliminary analysis of data is part of a doctoral study of the CT debugging practice during an 

engineering design process within a science project, which was realized by a group of Grade 4 

students at one elementary (K-5) schools in New Brunswick, Canada. Specifically, our paper dealt 

with part of a debugging process where young (about 9 years old) children were introduced, for the 

first time, into a computer coding to program an animal part performing a rotational movement of an 

integrated servo motor controlled by a micro:bit. In particular, we looked to exemplify the role of 

mathematics in this process. Indeed, we can identify several episodes of students’ work where 

mathematical connections were explicitly or implicitly present. For example, when students 

composed their code, they had to introduce different numeric values of variable identifying the initial 

position of a servo motor (at 180) and the intermediate position (at 0) while making sure the servo 

motor completes a back-and-forth 180 degrees rotation. In addition, they had to introduce a pause 

long enough to allow adequate time (1 second) to complete the movement. Yet, several problems 

have occurred requiring students’ efforts to debug their code while paying attention to mathematical 

meaning of several components of their program.  

In particular, when introducing the first pin writing block setting the initial position of servo motor, 

students have missed introducing the second one (intermediate position). This is why, during the 

testing, their virtual servo motor remained immobile once the movement button (A) was activated. 

Yet, from the mathematical point of view, this way of introducing a rotation (not yet seen in the 

mathematics curriculum by Grade 4) would require some sophisticated algebraic reasoning as was 

shown by Kilhamn (2022) but not yet made explicit to the young learners. In addition, besides a 

complex logic of the program requiring a pause block controlling the time for rotation, students 

seemed to be struggling in making sense of the parameter controlling the duration. Indeed, students 

of this age are not yet familiar with measuring duration in milliseconds. Furthermore, when talking 

about ‘trying’ to fix the program several times, children seemed to be unaware of a possibility to play 

with different parameters by changing the values of the variables involved. In fact, their first version 

was limited to the use of default values (180 for the initial position and 10 ms for the duration of the 

pause). On top of it, students could not realize that 1 sec is equivalent to 1000 ms. Only the 

intervention of the classroom teachers and a resource person helped them to complete the debugging 

process for this stage (coding and testing on virtual simulator).  

We shared these very initial observations in our MACAS presentation. We leave the reader with the 

question about the role of mathematics in the debugging process, which requires further study. We 

can even be more provocative in terms of enriching discussion about connections of CT and 

mathematical thinking asking if mathematical debugging should be recognized as an essential part of 

the debugging practice and eventual didactical apparatus to support students’ learning and in turn, as 

Kilhamm (2022) suggest, to make algebra-logos didactically explicit.   
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Breaking down classroom walls to STEMulate collaboration in science 

and mathematics education 

Manon LeBlanc1, Nicole Lirette-Pitre1 and Micaël Richard1 

 

There is a critical need for STEM education in schools. Yet teachers seem ill-equipped to do so, which 

suggests that part of the problem lies in pre-service education. We are therefore interested in critical 

issues in STEM education, which in turn leads us to ask curricular questions about how to integrate 

math and science in post-secondary education through a STEM perspective. During the Fall 2021 

semester, the two professors teaching the mathematics education course and the science education 

course collaborated to engage students in a collaborative STEM experiential learning project. 

Interviews were conducted with three students after the end of the semester. The results suggest a 

strong potential for such collaborations to better prepare students for their future careers. 

Keywords: STEM, mathematics education, science education, pre-service teacher education. 

 

STEM: Why, how and where? 

Why? 

In recent years, we have witnessed (or participated in) a movement aimed at developing students who 

are able to mobilize a range of knowledge, skills, and attitudes to better understand, analyze, and 

attempt to solve various problems around them, as well as actively participate in society by initiating 

or participating in innovative projects. Students need to make connections between science, 

technology, engineering, and mathematics (STEM) to find solutions to these problems (Bakırcı & 

Karışan, 2018; Bergsten & Frejd, 2019; Maass et al., 2019). There is no shortage of post-secondary 

students in STEM related fields. In 2020, the number of students enrolled in a science program had 

increased by 45% since 2010 and engineering program admissions were up 48% (Usher, 2022). 

Students in these programs develop a specialised set of skills, such as problem solving and critical 

analysis. However, as the labor market becomes more complex with automation and job 

transformations, higher STEM education is now in greater demand than ever before (Frenette & 

Frank, 2020). Students who emerge from the education system are expected to have learned 

integrative STEM. In many cases, this has led to the need to improve STEM education in schools. 

Yet, some people would agree that our current educational system does not really support STEM 

education (Gravemeijer et al., 2017). We suggest that the problem lies in the pre-service training of 

teachers, who feel ill-equipped to create learning-rich environments and support students in their 

STEM learning. While STEM education in schools is well documented, the situation is different for 

STEM education in the university setting. Although there are some university courses that address 

STEM, few initiatives leverage STEM education collaboratively across different courses. What type 
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of pre-service training adequately educates future teachers in STEM education? What skills and 

abilities must they develop to be able to accompany students in their STEM learning? 

How? 

Having true STEM education is not as simple as combining Science, Technology, Engineering, and 

Mathematics. Hobbs et al. (2018) describe five possible scenarios of STEM teaching. (1) Each of the 

disciplines is taught separately. For example, a student will have a course in biology, chemistry, 

physics, calculus, engineering, and programming all taught in parallel without any overlap. The idea 

is to give the basics and the student becomes responsible for the integration of the disciplines. 

Students are taught concepts independently such as the conservation of energy in physics, the energy 

levels of electrons in chemistry, and the ecosystems in biology and must determine how each concept 

relates to the others. (2) All four disciplines are taught but emphasis is placed on one or two. Often 

the two disciplines that stand out are the sciences and mathematics. (3) One discipline is integrated 

while the others are taught separately. For instance, mathematics is often used in physics and 

chemistry, and it can be easy to integrate mathematics into these scientific disciplines. Specifically, 

physics uses scientific reasoning as the basis for concepts, but uses mathematics to quantify them. 

Every law, whether it is the laws of motion, the laws of thermodynamics, or the laws of electrical 

circuits, can be represented and quantified by mathematical equations. Physics and mathematics are 

almost integrated by nature. The same is true of chemistry, which often uses exponents, orders of 

operations, algebra, unit conversion, and scientific notations to represent the concepts discussed in 

chemistry courses. Mathematics is integrated with physics and chemistry by its very nature. (4) The 

STEM curriculum is divided into the separate disciplines. A teacher may present a problem and the 

students will need to look at it with different lens. The solution will vary depending on the discipline 

the student is using as a lens. (5) Total integration of the four disciplines. It becomes impossible to 

distinguish between the disciplines. There are no longer borders between science, technology, 

engineering, and mathematics. From the first scenario onward, there is a steady progression of 

integration leading up to the goal of total integration. 

Mathison and Freeman (1998) also present five levels of integration for STEM disciplines. The first 

is intradisciplinary, where the connections within the disciplines are enhanced. An atom’s electrical 

charge is both a chemistry and a physics concept and mentioning this is an example of 

intradisciplinary teaching. Next is cross-disciplinary. In this level, coordinated contents across 

separate disciplines are planned. The emphasis is placed on the transferable skills across the 

disciplines. The third level is interdisciplinary. Here, one skill, concept or method is viewed using 

multiple disciplines. The fourth level is integrated where disciplines are lost in a global perspective 

and the approach is inquiry based and issue oriented. The fifth level is integrative and is also inquiry 

based but student/teacher negotiated, and issue directed. There is more freedom for student 

exploration. It becomes clearer that regardless of the model that’s taken, the result seems to reflect 

the same idea. True integration knows no singular discipline. It becomes a completely homogenous 

blend of skills and concepts that allows for a better understanding of the problems of the world and 

gives better means of solving them.  

A point to consider is that true integration is complex. Concerns may arise in relation to the structure 

of the curriculum or the evaluations of its criteria. Two common problems can occur. One is that 

integrative teaching is done in class activities, but evaluations remain standardized. The second is 
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that the concepts learned are superficial and yield no true utility outside of the classroom (Mathison 

& Freeman, 1998). Therefore, the path to true integration begins with the role of the curriculum. 

Beane (1995) suggests that a curriculum should express a problem or an issue. This problem can be 

a personal problem, or it can be a societal problem. Creating a curriculum in this manner will help 

students develop a better understanding of themselves and the world around them as well as acquire 

knowledge in an organic way. It allows for total integration because life does not have the boundaries 

disciplines do. When presented with an environmental issue like climate change, it becomes 

impossible to address the problem in terms of a single discipline. To properly address the problem, 

considering aspects like (a) the effects of aerosols on the ozone (chemistry), (b) renewable energy 

(physics/engineering), (c) the wildlife of different ecosystems (biology) and (d) the economic effects 

of reducing fossil fuel usage (mathematics) can all be beneficial. Societal issues are rarely, if ever, a 

one discipline issue. Beane (1995) also specifies that there is no intermediate step in which disciplines 

are identified in the problem. The goal is to use knowledge without the labels of the disciplines. The 

focus is on the activities and projects, not on the subjects. If the activities are thoughtfully constructed, 

they will inevitably draw on a variety of disciplines. This is not to say that some disciplines are not 

more apparent in certain societal issues than others. But there lies the beauty of collaborative teaching. 

Every teacher has multiple areas of expertise. When a person looks at a societal issue, the discipline(s) 

with which the teacher is most familiar becomes more apparent. The more experts that collaborate, 

the easier it is to integrate different angles when studying an issue. The key is to avoid separating 

disciplines once the curriculum is in its final planning stages. Collaborative teaching facilitates this.  

Another approach to planning a curriculum is the 11-step model created by Harden (2000). This 

model relies on collaboration and co-teaching between the different STEM departments (i.e., the 

physics, biology, chemistry and mathematics departments of a certain university) but could also be 

used in the school system. The first step is isolation. The subject specialists individually consider 

their subject matter, what they consider to be important concepts to learn in the classroom. Step 2 is 

awareness. They learn of the objectives and concepts the others wish to bring to the classroom. Step 

3 is harmonization. They consult each other and create connections between the concepts and the 

objectives. Step 4 is nesting. Here, the specialists will look through their own subject planning and 

identify skills that could be related to the other subjects now that they are aware of each other’s 

curriculum. Step 5 is temporal co-ordination. All the specialists schedule their teaching programs 

while consulting each other. Step 6 is sharing. Specialists can plan co-teaching when they find overlap 

between concepts. Step 7 is correlation. In this step, much of the curriculum is still subject based, but 

a new dimension of integrative teaching is added. Students will learn the individual subjects first then 

be presented a lesson of co-teaching where they are integrated. Step 8 is the complementary 

programme. The integrative lessons are now most of the focus of the teaching. Scheduled 

opportunities for subject based lessons become a small part of the curriculum and are placed for 

students to gain a deeper understanding of specific subjects. Step 9 is multi-disciplinary. The borders 

between disciplines become thinner and thinner. The theme in a programme becomes a structured 

body of knowledge that transcends disciplines. There is no longer subject-based teaching. Harden 

(2000) gives the example of the endocrine system since this model was created for the medical field. 

It becomes the body of knowledge that’s needed to be learned and the physics of the body, the biology 

of its anatomy and physiology and the chemistry of the drugs used are the disciplines that are no 

longer distinguishable. Step 10 is inter-disciplinary. There is now a loss of the disciplines’ 
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perspective. The theme now revolves around a phenomenon where multiple disciplines are needed 

yet not identified. The final step is trans-disciplinary. In this final step, the focus is now on the 

knowledge of the real world. There are no subjects to learn. Students are provided a situation, and the 

integration is done in their mind. This reflects the result of the models proposed previously. 

Although the conclusions of the different approaches are similar, elaborating the different steps of 

integration provides a useful tool. It can sometimes seem like an impossible task to go from no 

integration to complete integration. But deciding on the scope and level of integration that is realistic 

in a teacher’s specific circumstances is better than no levels of integration at all. Also, these 

approaches rely heavily on collaboration and individual responsibility. It could be to an organisation’s 

benefit to offer training to staff members to improve the planning, organization, and execution of 

curriculums (Malik, A. & Malik, R., 2011). 

Where? 

As we have shown, the idea of integrated STEM is not new. However, the lack of readily available 

integrated STEM education is a testament to its complexity in practice.  Postsecondary institutions 

offer a variety of STEM programs. Some could be described as intradisciplinary or cross-disciplinary 

STEM programs, where departments try to show students the connections between disciplines. You 

may also find some institutions who offer integrated science programs.  They are not STEM, but the 

“S” is fully integrated. An example of this is the iSci program at McMaster University. 

The iSci program is a four-year undergraduate program that offers an innovative pedagogical design 

and delivery model to better prepare students to face global science related challenges like climate 

change, pandemics, and renewable energy. As stated by Symons et al. (2017), this model, called 

Research-based Integrated Education (RIE), allows students to construct their understanding of 

science in four levels. Students start on level 1 with literature-based research and argument 

construction and continue to level 2 with developing research questions and original models along 

with collecting and analysing data. By level 3, they select the research topic they want and put 

emphasis on science communication until they reach level 4, which is their undergraduate thesis. We 

can see the integration because the borders between the science disciplines are not present. The 

program focuses on problem solving and the skills required to do so, mainly the ability to find and 

organize information and create new meaning while also being able to communicate that meaning. 

As for complete STEM integration, there is one program that seems particularly interesting. It is 

called the iCons program, a four-year undergraduate STEM program offered by the College of 

Natural Sciences at the University of Massachusetts. It includes a course every year and a year-long 

thesis. Auerbach (2015) offers a quick synopsis of every year. In year 1, students have a course on 

global challenges and scientific solutions. They learn about the attitudes and methods of integrated 

science and practice teamwork from case studies taken from current real-world topics. The final 

project involves students designing their own case study. In year 2, students have a course on 

integrative science communication. They are given themes like renewable energy and biomedicine 

and learn to engage with issues related to the theme through writing, reading, speaking, and debating. 

In year 3, students are given the opportunity to apply their learnings through team discovery 

laboratories and present their experiment findings. Finally, in year 4 the students design their own 

interdisciplinary research project.  
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This program draws on real-life situations and the disciplines naturally follow. In terms of integration, 

we see the students start fully integrated in year 1. Once they are in the right mindset and learn the 

necessary methods, they are given specific scenarios based on themes chosen by the students. The 

themes themselves show a degree of interdisciplinarity. They can then refine their methods and 

develop transferable skills through theoretical problem solving and concrete problem solving. Finally, 

they take their new learning and re-apply what they learned to real-life situations. It takes the approach 

suggested by Beane (1995) and applies it in both directions. The program starts and ends with real-

world issues, which gives the framework for STEM integration and then it develops specific 

transferable skills in the middle, creating a STEM program almost in the shape of an hourglass. It’s 

a program that we feel truly embodies integrative STEM education. 

While these programs are not targeted at educators, they could provide valuable insight into the 

training of future teachers, as several ideas, including the use of real-life situations to integrate 

science, technology, engineering, and mathematics, seem particularly interesting for meeting the 

STEM education needs of individuals enrolled in a Bachelor of Education degree. Given that teachers 

feel ill-equipped for STEM education, what better way to familiarize them with STEM education 

than to have them live it? That is what we attempted to do. 

STEM in our didactics courses: Take 1 

During the 2021 Fall semester, the mathematics education course as well as the science education 

course had the same schedule. That simple detail led to a collaboration between both professors of 

these courses. We co-taught part of the mathematics education and science education courses and 

engaged students in a collaborative STEM experiential learning project. Because of the special 

circumstances of COVID-19 such as social distancing and mask wearing, a few of the co-taught 

classes were given outside on the lawn around the Faculty of Education. The students sat on beach 

towels or lawn chairs and worked on their tasks. The professors also taught while outside. In October, 

the students visited an organic farm (figure 1) and transferred their new knowledge to a classroom 

context by developing a prompt, that is, a problem that could be presented to high school students 

and lead them to use STEM to suggest a solution. For example, some students looked at the possibility 

of creating a new kind of tomato, while others were more interested in the entrepreneurial aspect of 

the farm and selling vegetable baskets. After receiving formative feedback on those prompts from the 

two didactics professors, the students then had to transfer their knowledge and skills to a larger 

context, that of developing a month-long STEM unit for a high school class. They had to create a 

meaningful learning situation for high school students, keeping in mind the achievement of 

curriculum outcomes, as well as the development of digital skills and the three competencies of the 

New Brunswick Acadian and Francophone school system’s exit profile: social-emotional skills, 

cognitive skills, and communicative skills (Ministère de l’Éducation et du Développement de la petite 

enfance, 2016). They discussed this situation with two high school teachers (math and science) in an 

environment drawing on professional learning communities. This discussion with experienced 

teachers allowed them to improve their STEM teaching unit to better meet the challenges of the New 

Brunswick school system. Among other things, teachers raised some time constraints (students often 

take longer than we initially thought they would). They also stressed the importance of ensuring that 

learning is meaningful to students, in other words, that the problem being studied is not only realistic, 

but also close enough to the students’ own reality that they can feel compelled to engage. 
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Figure 1: Visit at the organic farm 

Research project potential 

We noticed that teacher candidates are particularly active and engaged when working on this type of 

project, sometimes exceeding our expectations. Although this project was initially intended to be 

pedagogical, we now recognize the strong research potential to inform a little-known area of 

university education, namely STEM teacher education for students enrolled in the Bachelor of 

Education program. Therefore, what began as a pedagogical project was transformed into a research 

project. This project falls within the qualitative paradigm. We wish to carry out a case study in which 

we will be interested in both the teaching and learning of STEM in the university context and more 

specifically in the mathematics didactics course and in the science didactics course. The case we are 

interested in is the collaboration between two didactics courses that took place in the Fall 2021 

semester. More specifically, we aim to:  

- Understand how to integrate STEM education into mathematics education courses and science 

education courses through experiential learning and faculty collaboration; 

- Synthesize the higher order skills and abilities developed by students enrolled in mathematics 

and science didactics courses as they develop STEM teaching situations. 

The Université de Moncton, Moncton campus, welcomes approximately 4,000 students annually. 

Roughly 550 are enrolled in the Bachelor of Education program, and about 200 of them have chosen 

the secondary school teaching option, a quarter of whom have a major or minor in mathematics or 

science. If we divide these students almost equally across the five years of the teacher education 

program, we have very small groups of students in both math and science didactics, which has 

facilitated the collaboration between the two courses. In the Fall 2021 semester, four students were 

enrolled in the mathematics education course and three were enrolled in the science education course. 

We asked these seven students to participate in an interview to help us better understand their 

experience in the course. Interview questions focused on collaborative sessions between students of 
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both courses (e.g., writing questions to prepare for the farm visit during class time), the visit to the 

farm, the creation of STEM didactic situations (formative and summative), the participation in a 

professional learning community with both teachers, and the feedback given by the professors 

throughout the course. We also asked the students what were the main learnings (didactical and 

pedagogical) that were achieved and what were the key elements that could be transferred to their 

future practice. Three of them answered our call positively. A research assistant conducted the semi-

structured online interviews with these three individuals. At the time of the interview, the two didactic 

courses (math and science) had been completed, the grades had been handed in, and students had no 

further courses with these two professors until the end of their undergraduate studies, eliminating the 

participants’ desire to respond positively to questions to increase their grade in the course. The 

research assistant transcribed the interviews. During the transcription process, all traces of the 

participants’ identity were removed. Given the small number of students enrolled in the two courses 

and to respect the anonymity of the individuals, each participant was given a transcript of the 

interview to decide if he or she wished to have any passages omitted from the analysis, as they 

provided a means of identification. Doing so allowed us to give participants the opportunity to 

validate the interview transcript. We then conducted a thematic analysis of the verbatims to highlight 

the main ideas mentioned during the interviews. 

The students’ perspective 

Students talked about the integration of STEM education into mathematics education courses and 

science education courses through experiential learning and faculty collaboration. When asked about 

their experience, four themes emerged: the invaluable feedback received from the teachers, the farm 

visit, the appreciation for the courses that were offered outdoors, and the relevance of the feedback 

from both professors throughout the semester. The feedback from the teachers led students to reflect 

on things they had not thought of and, as a result, allowed them to improve their work. 

Student B:  It made me realize things a little bit. Like, in the future, do not forget this when you 

are doing your planning. Things that I can use for this project, but also for other 

projects, for other lesson planning. 

Student C:  We would read the comments and brainstorm improvements. Then we would move 

on. Then, like at the end, our project really improved. 

With respect to the farm visit, some talked about the richness of the visit, while others were left 

wanting more: “It seems, however, that there were several questions that we were asking ourselves, 

and then we were hoping to get answers that were a little, how shall I say, more complex, more 

laborious than what we got from them.” Finally, the professors’ feedback was appreciated, 

particularly because it allowed them to improve their work before the final summative evaluation, a 

process in which they had experienced little during their initial training. 

Student A:  Often, we are given feedback on what we need to improve, but we were also told 

what we did well, so that is something that solidifies our learning. […] Often, we 

do an exam, then once it is done, it is over, it is put aside and you do not come back 

to it, and it should not necessarily be like that. You should be able to go back and 

improve your work. 
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We were also interested in knowing what should be kept and what would benefit from being modified 

in the collaborative course. The issues raised on this question are presented in Table 1. 

Table 1: Elements to be kept or modified in future versions of the collaborative STEM course between 

the mathematics education course and the science education course 

To keep Improvement 

Visit to the farm More flexibility with the visit 

A greater significance in the final project 

STEM project More time to explore different problems 

Clearer instructions 

A debriefing on the project 

Better overall organization 

Outdoor work  

Talking with the teachers  

Formative assessment  

Long-term work with the same group of peers  

Collaboration between two courses (not necessarily 

combined) 

 

 

In general, the collaboration between the two courses seems to have been appreciated. The elements 

to be improved lie in the freedom granted to the students (they would have preferred to choose the 

place they were going to visit, rather than being forced to visit the farm, as not all of them were 

interested in the issues that emerged from the visit.) and in the general organization of the course 

(since it was the first time that we were offering these two courses by co-teaching, we recognize that 

some decisions made during the semester caused some stress for a few students). 

Finally, we looked at higher order skills and abilities developed by students enrolled in mathematics 

and science didactics courses as they develop STEM teaching lessons and units. Three main themes 

emerged from our analysis: the significance of the work done, their ability to collaborate, and their 

commitment. Also, the students were able to make connections between what they had learned and 

their future practice.  

Student B:  I am thinking about incorporating situations that are more relevant to what is going 

on in the world, but also trying to have an openness, trying to leave a little bit more 

control to the students. Here is what to do, here is a project, here is a task. What do 

you need to learn to accomplish the task? 

They also recognize the power of collaboration, both with their peers and with their professors, in 

their learning. 
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Student A:  It was really a work environment and not a professor-student environment. It was 

really a collaborative work environment, which was different from my other 

classes. 

Student C:  Especially in education, I like to collaborate or do team projects because that is how 

you grow, compared to doing projects alone. 

The important level of commitment, which was reflected in the quality of work delivered and the 

exceeding of expectations set in both courses, was noticed by the professors, but more importantly 

by the students.  

Student B:  I saw far more how it could help me in my future profession. I saw way more how 

it could help me in my classroom, what I could use in my classroom, then I liked it. 

It engaged me to put in more effort, then put in more time than other university 

courses. 

Student C:  In all my didactics, I have been proud of my projects, but I think STEM was really 

the “pinnacle,” yeah. 

A particular example caught our attention. One team presented a four-week learning situation that 

could be done with grade 9-12 students (when they only had to target one grade). They integrated not 

only the elements seen in the mathematics education course and the science education course, but 

also some seen in other courses in their university training (for example, the importance of involving 

students in the development of evaluation criteria, a principle seen in the course on assessment). In 

addition, they were able to identify several interesting documents with authentic data, as well as a 

variety of experts who could visit the students to support their learning. 

STEM in our didactics courses: Take 2 

Considering the feedback received by our students, we decided to retain certain elements and improve 

or modify other elements in a second version of this course for the Fall 2022 semester. Some of the 

elements we will be retaining are the STEM project, the outdoor work, the professional learning 

community with high school math and science teachers, the formative assessments, the co-teaching 

of certain classes, and the long-term work with the same group of peers. In this second version, the 

STEM project will consist in the design of an actual outdoor classroom. The students will use the 

engineering design process to create a model of an outdoor classroom that could be built on the 

campus of our university. In the beginning steps of the design process, the students can choose to 

visit a school in New-Brunswick that has an existing outdoor classroom and collect data and ask 

questions. Then they can integrate elements of what they liked and found relevant in their own design. 

They will present their ideas to their peers and the professors and receive feedback. They will 

subsequently create a STEM unit for high school pupils that integrates their outdoor classroom design 

and present their ideas to the high school teachers participating in the professional learning 

community and receive their feedback. Once again, they will have a chance to improve their STEM 

unit before the final summative assessment. We hope to offer the students more flexibility in the visit 

for them to decide and coordinate when and where they visit the location and to make feedback they 

will receive during the professional learning community more pertinent to their STEM project and 

their STEM unit planning. We will also clarify the instructions in the documents that describe the 

tasks and improve on the rubrics for assessment. We wish to better organize the group work and the 

individual work. It is also important to note that the two professors received a research grant from the 
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New-Brunswick Department of Education and Early Childhood Development for the construction of 

an outdoor classroom at the Faculty of Education on the Université de Moncton campus and for their 

research project on integrative STEM in pre-service teacher education. 

Acknowledgment 

This project was funded by the Bureau de l’apprentissage expérientiel (Office of Experiential 

Learning) at the Université de Moncton. We thank them for their support. We would also like to thank 

the students who agreed to be interviewed. 

References 

Auerbach, S. M. (2015). The iCons Four-Year Curriculum Plan. 

https://icons.cns.umass.edu/sites/default/files/attachments/icons-at-a-glance-fall2015.pdf 

Bakırcı, H., & Karışan, D. (2017). Investigating the preservice primary school, mathematics and 

science teachers’ STEM awareness. Journal of Education and Training Studies, 6(1), 32.  

Beane, J. (1995). Curriculum integration and the disciplines of knowledge. Service Learning, 

General, 44, 616–622. 

Bergsten, C., & Frejd, P. (2019). Preparing pre-service mathematics teachers for STEM education: 

An analysis of lesson proposals. ZDM, 51, 941–953.  

Frenette, M., & Frank, K. (2020, June 29). Automation and Job Transformation in Canada: Who’s 

at Risk? Statistics Canada.  

https://www150.statcan.gc.ca/n1/pub/11f0019m/11f0019m2020011-eng.htm 

Gravemeijer, K., Stephan, M., Julie, C., Lin, F.-L., & Ohtani, M. (2017). What mathematics education 

may prepare students for the society of the future? International Journal of Science and 

Mathematics Education, 15(Suppl 1), S105–S123.  

Harden, R. M. (2000). The integration ladder: A tool for curriculum planning and evaluation. Medical 

Education, 34(7), 551–557.  

Hobbs, L., Cripps Clark, J., & Plant, B. (2018). Successful Students – STEM Program: Teacher 

Learning Through a Multifaceted Vision for STEM Education. In R. Jorgensen & K. Larkin 

(Eds.), STEM Education in the Junior Secondary: The State of Play (pp. 133–168). Springer.  

Maass, K., Geiger, V., Romero Ariza, M., & Goos, M. (2019). The role of mathematics in 

interdisciplinary STEM education. ZDM, 51, 869–884.  

Malik, A. S., & Malik, R. H. (2011). Twelve tips for developing an integrated curriculum. Medical 

Teacher, 33(2), 99–104.  

Mathison, S., & Freeman, M. (1998). The Logic of Interdisciplinary Studies (Report Series 2.33). 

National Research Center on English Learning and Achievement.  

https://files.eric.ed.gov/fulltext/ED418434.pdf 

Ministère de l’Éducation et du Développement de la petite enfance. (2016). Profil de sortie d’un élève 

du système scolaire acadien et francophone du Nouveau-Brunswick.  https://shorturl.at/lqCO4 

Symons, S. L., Colgoni, A., & Harvey, C. T. (2017). Student perceptions of staged transfer to 

independent research skills during a four-year honours science undergraduate program. The 

Canadian Journal for the Scholarship of Teaching and Learning, 8(1), Article 1.  

Usher, A. (2022). The state of postsecondary education in Canada, 2022. Higher Education Strategy 

Associates. 

 

 

 

 

https://icons.cns.umass.edu/sites/default/files/attachments/icons-at-a-glance-fall2015.pdf
https://www150.statcan.gc.ca/n1/pub/11f0019m/11f0019m2020011-eng.htm
https://files.eric.ed.gov/fulltext/ED418434.pdf


 336 

Beyond flipped classrooms: Students’ learning experiences in an 

undergraduate physics course 

Dominic Manuel1 and Marc de Montigny1 

 

We present a collaborative pilot study between three professors at the Campus Saint-Jean, University 

of Alberta, in which we examined students’ learning experiences when the instructor used two 

student-centered teaching approaches: inquiry-based learning (IBL) and flipped classrooms in an 

undergraduate physics course. Inspired by Marshall et al.’s (2009) 4E × 2 inquiry-based teaching 

model and Lebrun and Lecoq’s (2016) three types of flipped classrooms, we designed and enacted 

activities that combined the two approaches throughout the Fall 2021 semester. We collected 

participants’ reflections after each activity and conducted semi-structured interviews via Zoom with 

four participants at the end of the semester. Preliminary results from a thematic analysis revealed 

promising learning experiences with these approaches for learning, mostly with IBL. However, 

students felt that expectations towards the videos were not always clear.  

Keywords: Inquiry-based learning, flipped classroom, science education, university physics course, 

student experiences. 

 

Context of the study 

The complexity that persists in all spheres of society as well as the exponential growth of new digital 

technologies that emerge in all sectors require important changes in the way citizens think and reason 

mathematically and scientifically, as most often, these competencies can go beyond what is taught in 

classrooms (Lappen, 2000). It thus becomes more essential to better educate students both in schools 

and in postsecondary institutions in the science, technology, engineering and mathematics (STEM) 

fields by supporting them in developing such competencies, such as critical and creative thinking and 

decision-making in science, and use technologies efficiently so they can adapt themselves to the 

reality of a society continuously changing, and become vectors of progress and leaders in their 

respective fields. This thus elevates teachers’ expectations regarding teaching mathematics and 

sciences, as they must implement high-quality teaching practices to create effective learning 

conditions in classrooms (Ball & Bass, 2000; Ball & Cohen, 1999). For many decades, researchers 

and educational administrators have emphasized the importance of developing various competencies 

in students, such as problem-solving skills, inventing and creating their own strategies and 

experimentations, defining and verifying hypothesis, manipulating variables, collaborating in groups 

and interacting with colleagues, and communicating facts and proofs (Lesh & Zawojewski, 2007; 

O’Connor & Michaels, 1993; Windschitl, 2003; Windschitl et al., 2012). Many researchers in 

mathematics and science education propose using more student-centered approaches in classrooms 

in which students take more responsibilities in their learning process by engaging themselves in 
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various tasks and interacting with their peers and the professor, as together they co-construct new 

knowledge (Mass & Artigue, 2013) This includes the sciences such as physics. 

Physics is the most fundamental of natural sciences; it deals with the smallest phenomena such as the 

atomic nucleus, as well as the largest structures such as the universe and cosmology. Observing 

phenomena and studying the relationships between variables are part of important responsibilities of 

physicists so they can make new discoveries to better understand our universe, to predict problematic 

situations that occur and that could potentially influence the future, and to use critical thinking and 

decision-making skills to find creative and innovative solutions to those problems. Moreover, many 

discoveries in physics are made because of the important role that technologies play in the 

laboratories. We thus suggest that doing science requires students to be engaged in ways that allow 

them to work more like scientists and still learn theoretical and practical foundations related to physics 

in classrooms. Most of these competencies that physicists use are similar to those essential for citizens 

to adapt and be able to contribute to their society.  

In addition, pedagogy in physics is also a developed subject because of its versatility and the fact that 

many phenomena can be understood by means of various representations, such as equations, graphs, 

models, demonstrations, experiments, technological simulations, and others. These representations 

naturally permit the use of different models when learning and can not only support students in 

developing deeper meaning of concepts taught, making links with other concepts. In addition, these 

representations may adapt to various students’ learning styles. In addition, these representations are 

possible because of the role that technologies can play in the learning process. We thus argue that the 

growth of technologies in our society nowadays can not only influence what is learned in classrooms 

but also how we can learn and discover new content. We also suggest that technological resources 

must be an integral part of the learning process of future scientists as well as for future teachers who 

will educate the future generations.  

Unfortunately, instruction in sciences in schools and in postsecondary institutions remain direct or, 

in other words, teacher centered (Maass & Artigue, 2013; Aulls & Shore, 2008). The professor takes 

the responsibility to transmit the information to the students, and students apply the knowledge via 

practice exercises often done at home. In their meta-analysis of studies on the implementation of IBL 

in mathematics and science classrooms Bruder and Prescott (2013) suggest that although there 

appears to be strong evidence on the positive effects of IBL on student learning, very little attention 

is put on the implementation process, which could partly explain why this approach is rarely used in 

classrooms. We suggest that this teaching model harms the training of all learners. First, this model 

does not support future scientists to develop the necessary competencies that scientists need in their 

careers. They simply learn content in their courses. Second, future secondary teachers do not get 

opportunities to do science and develop a scientific culture in their program when they take content 

courses. How can future teachers develop the necessary competencies in creating student-centered 

learning conditions in classrooms when they cannot experiment with science as leaners in their 

content courses? Yet, student-centered approaches are recommended in the science teaching reforms 

for many decades (National Research Council, 1996, 2000, 2011). We think that the pilot study 

presented in this paper could give some insights on the implementation process of IBL in physics.  

In this pilot study, which is a collaboration between a physics professor, de Montigny, and two 

professors in education: one specializing in mathematics and science education, Manuel, and one who 
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studies the use of technology, Pellerin, we aimed to improve the students’ learning experience in a 

physics course taught at the Faculté Saint-Jean, University of Alberta. Most students who take this 

course are enrolled in the secondary education program offered at the Saint-Jean campus, while others 

are enrolled in the science program offered at the same faculty. To improve the quality of teaching, 

we implemented a combination of two teaching and learning approaches that are considered as 

student-centered approaches: inquiry-based learning (IBL) and flipped classrooms. In general, IBL is 

an approach through which students learn concepts and acquire knowledge in ways that mirror the 

work of scientists while flipped classrooms is generally an approach where technologies facilitate the 

learning process by dividing what is learned in both inside and outside the classroom. In both these 

approaches, instead of simply being receptors of information transmitted by a professor, learners take 

more responsibilities in their learning process by exploring various interrogations and by constructing 

their knowledge by means of interactions with their peers and their professor. These approaches are 

thus the opposite of traditional instruction, which is commonly used in university undergraduate 

science courses. We are attempting to enrich the education of both future scientists and teachers who 

study in francophone minority institutions in Canada, such as the Faculté Saint-Jean.  

About the Faculté Saint-Jean 

The Faculté Saint-Jean is a francophone postsecondary institution that is part of the University of 

Alberta, in Edmonton. It is home to approximately 750 students, including about 400 in education 

programs and 220 in sciences. About 70% of the student body originates from French immersion 

programs. Therefore, learning in a second language is an additional difficulty faced by our students. 

This being said, we did not specifically investigate the language component in our study. We must 

add that students registered in the secondary education program and majoring in science only have 

one science education course. We thus believe that this project could also serve as a “didactic 

laboratory” (science education laboratory) where students are exposed to the scientific culture and 

explore as learners what it means to do science. Moreover, since IBL and flipped classrooms both 

facilitate a construction of knowledge between the professor and the students by sharing roles and 

responsibilities in the learning process, and an emulation of explorations similar to those scientists 

use, we suggest that this experience will also benefit the students enrolled in the science program as 

they will get opportunities to work in ways that will be demanded in their future careers.  

Goal and research question 

Research conducted on IBL in science classrooms has revealed that this approach is effective for 

fostering deeper learning opportunities (Aulls & Shore, 2008; Bruder & Prescott, 2013). In a similar 

vain, flipped classrooms are associated with higher academic achievements (Chen & Yeng, 2019; 

Torio, 2019). As far as we know, little is known about postsecondary students’ learning experiences 

with flipped classrooms, or with a combination of IBL and flipped classroom. Our goal is thus to 

examine students’ learning experiences of undergraduate students enrolled in a physics course 

(PHYSQ 124) that we describe in the methods section where both IBL and flipped classrooms are 

implemented. Our research question is: How do undergraduate students enrolled in the 

PHYSQ 124—Particle and Waves perceive their learning experiences when IBL and flipped 

classrooms are used as teaching methods? We assume that the combination of both approaches may 

reveal traces of a possible theoretical framework that can inform approaches beyond flipped 

classrooms.  
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Theoretical framework 

In this section, we describe the theoretical foundations for the two pedagogical approaches: IBL and 

flipped classrooms, on which we based our activities in our projects. For each approach, we present 

a working definition and a model, which guided us throughout the project.  

Inquiry-based learning is defined as a student-centered teaching approach in which students, working 

individually or in small groups, develop disciplinary and interdisciplinary knowledge and 

competencies by working in ways similar to those of scientists (Chickekian et al., 2011). Inquiry-

based learning is considered a socio-constructivist learning approach, as the teacher and students 

share the roles and responsibilities in the learning process (Aulls & Shore, 2008), and co-construct 

knowledge by means of interactions (Manuel, 2020). Moreover, IBL is also known as the “preferred 

teaching approach” to foster deep conceptual learning (Aulls & Shore, 2008), and to develop students’ 

interests towards science, technology, engineering, and mathematics (STEM) fields (Rocard et al., 

2007).  

Marshall et al. (2009) proposed the 4E × 2 teaching model for teaching mathematics and science 

using IBL. This model (Figure 1) contains three main components that teachers must consider while 

using IBL in classrooms: assessment, reflection, and an instructional approach consisting of four 

phases: Engage, Explore, Explain, and Extend.  

 

 

Figure 1: 4E x 2 IBL instructional model (Marshall, 2009) 

The Engage phase focuses on probing prior knowledge, identifying alternative conceptions, providing 

motivating and interest inducing stimuli, and developing scientific questioning. Students are usually 

exposed to an interrogation (task) in this phase. In the Explore phase, students work on the 

interrogation by predicting, designing, testing, collecting data, and reasoning. The Explain phase is 

reserved for interpreting data and findings, providing evidence for claims as well as communicating 

findings and providing alternative explanations for findings. In the Extend phase, teachers and 

students apply, elaborate, transfer, and generalize knowledge to novel situations. According to 

Marshall et al. (2009), the four phases are not necessarily linear, as some can be repeated in the 

process. For example, in the Explain phase, students might come up with other questions that could 

lead to another exploration (Explore phase). However, the authors also stress that the Explore phase 
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must precede the Explain phase for instruction to be considered as IBL. In fact, the Explain phase 

before the Explore phase is considered traditional teaching according to the authors.  

Flipped classrooms were initially defined as a teaching approach in which students learned content 

at home with videos or readings, and did coursework in class (Bergmann & Sam, 2009). The typical 

elements of a course are reversed, both in time and in space. We were much influenced by Lebrun 

and Lecoq (2016) who further saw flipped teaching as a setting where students play a more active 

role in the development of knowledge, and teachers and students thus share their roles in the learning 

process. Lebrun and Lecoq (2016) described three types of flipped learning (Figure 2). In Type 1, the 

“knowledge” is externalized via digital technology in an autonomous way with activities to 

accompany the learning in class. Type 2 is the inverse. Students research knowledge by exploring a 

theme independently (or in groups) and present/discuss/debate their conclusions in the classroom, 

thus sharing or changing roles between teacher and students. Type 3 is a combination of Types 1 and 

2 by alternating contextualization, decontextualization, and re-contextualization activities.  

 

Figure 2: Three types of flipped classrooms (Lebrun & Lecoq, 2016) 

We suggest that we go beyond flipped classrooms by combining this approach with IBL. 

Method 

We followed a qualitative interpretative method (Karrsenti & Savoie-Zajc, 2018) for our study. We found 

that collecting qualitative data would permit us to get a better grasp of the students’ experiences.  

We used combinations of the two approaches by designing and enacting activities in the physics 

course PHYSQ 124 called Particles and waves, taught by de Montigny at the Faculté Saint-Jean 

during the Fall 2021 semester. This introductory course covers kinematics, dynamics (Newton’s laws, 

energy, momentum), conservation principles, rotational motion, oscillations, waves, sound, and light 

and photons. Fifteen students were enrolled in the course, eight of whom were in the secondary 

education program. Twelve students participated in our study. The PHYSQ 124 course also includes 

a laboratory session, but we conducted our research only on the theory part of the course. The course 
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was taught in person for part of the semester. However, due to the COVID-19 pandemic, some classes 

were taught online on Zoom around mid-semester. The professor agreed to teach the rest of the 

semester bimodally, that is, both online and in person at the same time with some students attending 

the class in person and others on Zoom. Most of the classes were video recorded. Classes were 80 

minutes long, and they were held twice a week for a period of 13 weeks.  

The activities were designed using the 4E × 2 and the three types of flipped classrooms models. Each 

week, we, the research team, would meet online at Zoom for approximately two hours. During the 

sessions, the professor would present initial ideas of activities and other members of the research 

team would validate and give feedback on the design of the activity as well as important teaching 

practices to implement while enacting those activities. We made sure that all the activities respected 

an IBL model of teaching and had components for flipped classrooms. We also formulated questions 

to ask the students as well as other important teaching practices that the professor should use while 

enacting the activities. We took time to debrief on the previous week’s lectures in order to improve 

classroom experience if necessary. Lamiah Fahim, our research assistant (RA) would give us 

feedback based on the participants’ reflections. Most of our sessions were video recorded as well. 

As for the activities created, most of them contained a combination of IBL and the use of technologies, 

mostly videos and online simulators. Some parts of the activities were done at home, while other parts 

were done in class. For instance, in one activity on projectiles, we followed mostly a type-1 flipped 

classroom activity. Students watched at home prior to class a video on the different equations that 

can be used in kinematics, mostly on when gravitational acceleration had an impact on the movement. 

Then in class, they were exposed to an IBL problem. Students had to know which equations would 

be helpful to find a solution to the IBL problem. In another activity on Hooke’s law, students began 

the activity in class with an IBL in which they used a simulator to investigate the relationship between 

the force by the spring and the distance from the point of equilibrium, and then completed the activity 

at home watching a video on the topic. 

We used reflection forms and semi-structured interviews as data collecting tools. Each week, the 

participants would complete a reflection form using Google Form about their experience with that 

week’s activities. This would be managed by our RA, the research assistant. At the end of the 

semester, our RA conducted audio-recorded semi-structured individual interviews on Zoom with four 

participants. She transcribed the interviews and gathered and summarized all the weekly reflections. 

We must add that our RA was responsible for recruiting the participants at the beginning of this study 

and for collecting all the data because we needed to be certain that the professor of the course, who 

is part of the research team, could not identify the students participating in the project.  

We used a thematic analysis (Braun & Clarke, 2006). We identified elements that emerged from the 

corpus of the interviews as well as the reflections. We then categorized the elements in appropriate 

themes. We present our preliminary results in the next section. 

Preliminary results 

Four themes emerged from the data. The first one, which was a central topic of discussion for the 

participants during the interviews, was the learning potential of the approaches. Students found that 

the activities they explored in class and at home provided them with opportunities for more dynamic 

learning experiences. They also added that the activities pushed them to be more autonomous in their 
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learning experience and to experiment ideas before being taught the content in class. “I loved both 

pedagogy…I think that it is always good to try out new things on our own before they teach us the 

methods: how to do the calculations…” (Participant 1, interviews). Interestingly, students seemed to 

favour the IBL approach over flipped classrooms, partly because the IBL activities (in particular, the 

Engage and Explore phases) established links with their real-life experience. “I really preferred IBL 

because we had a model to follow with questions that guided our learning process” (Participant 3, 

interviews). Participant 2 explicitly mentioned during the interviews that “IBL helps us make links 

with the real life.” It is to be noted that most of the content covered in the course was concepts that 

students have learned in their secondary physics class. “Since the content we learned this semester 

resembles somewhat to what we learned in Physics 20 in high school, I knew the content. But I was 

able to make links between the content and real-life experiences” (Participant 2, interviews).  

The second theme was intrinsically related to the first one as it pertained to the actual delivery of the 

various activities. This theme is the availability of resources that accompany such activities. Students 

pointed out that the availability of multiple learning approaches and multiple resources rendered the 

course more engaging and dynamic. For instance, participant 1 mentioned that “The resources helped 

me explore the content in various angles besides simply listening to a presentation or listening to 

videos” (Participant 1, interviews). Participants also pointed out that the resources supported students 

in making the content more concrete. “The questions that we had in the separate documents really 

made the content more real like concrete. There were a lot of examples. I really appreciated the 

simulation with the hooks” (Participant 1, interviews). In addition, some students acknowledged that 

the videos used with the Type-1 flipped classrooms were good learning guides. In fact, in their 

reflection form, participant 6 mentioned that “when I didn’t understand something, I could go and 

listen to the video and listen to it again if needed…. You can accelerate or slow down the videos to 

help you understand. The Prof is gone after (class is over).” 

The third and fourth themes that emerged revealed certain challenges that occurred while 

implementing IBL and flipped classrooms in the physics course. As the third theme, students 

discussed the necessity to become more engaged in their learning and to also often interact with other 

classmates. The participants mentioned that they had to be more engaged in the learning process, and 

that they had to interact with the other classmates during the classroom activities. It appeared that this 

was quite new for students, and it required some adjustments during the semester. 

At first, I didn’t like flipped classrooms. It gave me stress because I had to listen to videos or 

prepare myself at home. I had a lot to do at home, and the course was pretty packed. But as 

the semester went on, I warmed up a bit. I liked the fact that we could access most of the 

resources long before the class… At the end, I appreciated the fact that the Prof forced us to 

view some materials before class. I became more at ease with the course” (Participant 2, 

interviews). 

However, as the semester progressed, it appeared that the adjustments brought more self-confidence 

in students. “I got my confidence. It went up because with others, we had more chances to better learn 

the content” (Participant 1, interviews). 

The last theme that emerged focused on the expectations of the videos as a learning experience or 

support. Some students claimed that they were unsure about the expectations and the roles of the 

videos, especially when a Type 1 flipped classroom was used. They did not feel that watching the 

videos was compulsory, as the instructor would tend to repeat the theory content of some videos, 
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apparently rendering their viewing redundant. Some participants even wondered whether the videos 

were a differentiation practice or just a review. Based on the way the classes went, one student 

admitted that watching the videos was not really necessary. According to Participant 2, “The videos 

were a good introduction, but I felt I understood the content more when the Prof explained it in class 

after” (Participant 2, interviews). In addition, some students also felt that the videos were not 

sufficient to support their learning. Participant 4 explicitly mentioned during the interview that the 

videos were not enough to understand all the content and be ready for a test or a quiz. 

Concluding remarks 

The preliminary results of this pilot study seem promising to improve the quality of the learning 

experience of learners. In general, the participants seemed to have appreciated the two approaches 

introduced in the physics course, particularly IBL. It also appears that some students in the education 

program might have already made links with teaching secondary science. In fact, the students seemed 

to have observed that using a combination of IBL and flipped classrooms brought a different dynamic 

in the classroom, one that pushed them to be more engaged in more autonomous ways as well as to 

learn to interact and co-construct knowledge with other classmates. Overall, the students’ experiences 

seemed to align with the motivations discussed in Lebrun and Lecoq (2016) for flipping classrooms. 

However, as we mentioned, this paradigm change seemed to have created a challenge for the learners 

from the start. Some participants clearly mentioned that it took time for them to adjust to the change in 

classroom (and outside of the classroom) activities. This experience seemed to them to be something 

new and unexpected. This aspect relates to Brousseau’s (1998) concept of didactic contract. This 

contract consists of all the implicit and explicit relations and conditions that are established between the 

professor and the students about the learning. In this project, de Montigny modified the didactic contract 

by integrating approaches that were possibly not known for students, or that students were not used to. 

This change in the didactic contract thus created uncertainties among the students when it came to their 

learning, as they were mostly used to having their professors present the content.  

In addition, the participants also made clear that using these approaches also brought multiple 

resources such as videos, simulators, etc. We suggest that students saw the benefits of technologies 

as a support for learning, as they permitted them to view the content in different ways and see various 

practical and real-life examples of the physics concepts. We must mention that at the end of the 

semester, one student emailed the professor and asked for his permission to use some of the resources 

that were used in the PHYSQ 124 course in their future classrooms.  

The results of this study also revealed that it is important for the professor to clearly identify the 

expectations of students when it comes to their learning for these approaches to be implemented with 

success. In our study, the expectations were not as clear for the role of the videos in the learning 

process. Some students did not quite see its place in the activities. Some saw it as differentiation of 

learning or as reviews. This aspect made us reflect on teaching physics as well as other subjects. Our 

reflections highlighted that it is thus important that professors implement high-quality teaching 

practices in order to support student learning, not simply having good questions for students to 

explore, but also having clear expectations of every aspect of the learning process. The semester 

created opportunities for de Montigny to reflect on his teaching practices in class, for instance, how 

to elicit students’ thinking in ways that it will permit them to reflect deeper and explain their 

reasoning, as well as to how to maintain the cognitive demand of the tasks in ways that he does not 
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say too much to students so they could be more creative and use their own reasoning. This latter 

teaching practice, as well as setting and maintaining expectations are deemed essential and crucial to 

implement in future teachings so that the videos remain a learning need and not a revision resource. 

It became obvious that the videos were not always a learning need since the professor reviewed the 

content presented in the videos, thus lowering the cognitive demand. Students did not need to push 

themselves further, as they knew that the professor would discuss the content. This is also another 

example of an explicit didactic contract that was created. We believe that this is an important aspect 

to consider in the implementation of IBL in science classrooms. More research is needed to bring 

more details about the implementation process.  

Limitations and future studies 

Two major limitations influenced our project. One limitation of this project is that it focused on the 

perceptions of students’ experiences in learning. More studies would be needed, hopefully with a 

larger sample, to make more precise conclusions on students’ learning experiences. Another 

drawback was that most of the contents covered in the course were concepts which students had 

already learned while in high school, thereby raising the question as to whether the experience would 

be different in a course with only new contents. It is possible that the learning experiences were 

positive because of that aspect, and these experiences would be different if the contents were always 

new to the students. In that respect, we point out that most of the new topics, not seen in earlier 

programs, were covered by using the IBL approach.  

Along those lines, a potential avenue for further research would involve deepening the learning 

experiences by assessing the pedagogical approaches when applied to new contents that students have 

not learned previously. At the Faculté Saint-Jean, this could be done with the second physics course 

PHYSQ 126—Fluids, fields, and radiation, which comprises newer content than PHYSQ 124. 

Another, very interesting, next step would be the laboratory portion of the course. This would enlarge 

the possible activities considerably. For instance, the Engage and Explore phases of the 4E × 2 

approach to IBL could be accomplished in the laboratory. The laboratory would also allow us to bring 

further pedagogical approaches. Ultimately, this pilot project could lead to studies in other physics 

courses and other science courses, as well as other content areas. 
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Empower students’ mathematics problem-solving skills: The role of 

Computational Thinking 

Yimei Zhang1 , Tanya Chichekian2 and Annie Savard1 

 

Integrating Computational Thinking into curriculum will foster students’ use of their cognitive 

abilities, which will contribute to their development of problem-solving skills and finally to 

meaningful learning. In order to investigate the role of CT in mathematics teaching and learning, a 

case study was conducted to analyze a famous ancient-Chinese mathematics problem, called 

“Chicken and rabbit in the same cage.” In this case study, we define the role of CT in mathematics 

teaching and learning and explain the connections between CT and problem solving in mathematics 

and everyday life. The findings suggest that the ability to embrace CT is crucial for mathematics 

problem-solving, especially when planning to teach problem-solving. Consequently, applying CT into 

mathematics education could potentially facilitate the transfer of specific skills to other disciplines 

(e.g., literacy, science, arts, etc.). 

Keywords: Problem-solving skills, unplugged Computational Thinking, elementary mathematics. 

 

Introduction 

Problem-solving is one of the prominent skills that fosters students’ understanding and application of 

mathematical concepts and content knowledge (Hiebert et al., 1996). Although many students often 

report experiencing difficulties with problem-solving in mathematics (Berch & Mazzocco, 2007), due 

to its importance in daily life and understanding the world around us (Tambychik & Meerah, 2010), 

empowering students with problem-solving skills is and remains an important goal in education. 

Computational Thinking (CT) represents a universally applicable skillset. CT skills include managing 

information effectively and efficiently with or without digital technologies (Wing, 2010). CT has 

been linked to creativity and innovation, and it has important application in STEM areas. Thinking 

processes involved in CT refer to formulating problems and deriving solutions similar to those carried 

out by an information-processing agent (Wing, 2011). Therefore, CT is not only for computer 

scientists who write the codes, but for anyone operating within digital environments (Wing, 2011). 

Research in mathematics education shows that implementing CT into the curriculum fosters students’ 

use of their cognitive abilities, and contributes to the development of problem-solving skills, and, 

ultimately, to meaningful learning (Weintrop et al., 2016). Moreover, the process of problem-solving 

in mathematics is also conducive to the application of CT (Hambrusch et al., 2009; Jona et al., 2014). 

This study explores current mathematics curriculums at the elementary level (especially in the 

cultivation of mathematics problem-solving skills) to find out the potency and traces of application 

of and awareness to CT in current mathematics education. Specially, this research explores how 
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Computational Thinking integrated with mathematics problem-solving (Weintrop et al., 2016). This 

paper showcases a case study (Lambert & Lambert, 2012), which defines the role of CT in 

mathematics teaching and learning and highlights the connections between CT and problem solving 

in mathematics and everyday life. 

Theoretical background 

Computational Thinking 

Computational Thinking has been referred to as “a key 21st century skill” and is a vital component 

for everyone’s learning (Yadav et al., 2016). The Computer Science Teachers Association (CSTA) 

asserts that “the study of Computational Thinking enables all students to better conceptualize, 

analyze, and solve complex problems by selecting and applying appropriate strategies and tools, both 

virtually and in the real world.” In this research, CT includes the implementation of the following 

steps: “describe a problem,” “identify the important details needed to solve the problem,” “break the 

problem down into small, logical steps,” “use steps to create algorithm that solves the problem,” 

“finally evaluate the solving process” (Shute et al., 2017). 

In the study, our model is focused on underlying conceptual foundations acquired to solve problems 

via a CT perspective and clarifying how different dimensions of CT can be highlighted and used in 

mathematics problem-solving procedures. This is consistent with models that focus on approaching 

problems, such as Shute et al. (2017), who expand their model of CT to all K-12 subjects. They have 

categorized CT into 6 facets: decomposition, abstraction, algorithm, debugging, iteration, and 

generalization.  

• Decomposition: Dissect a complex problem/system into manageable parts. The divided parts 

are not random pieces, but functional elements that collectively comprise the whole system / 

problem. 

• Abstraction: Extract the essence of a (complex) system. Abstraction has three sub-categories: 

data collection and analysis, pattern recognition, and modelling. 

• Algorithms: Design logical and ordered instructions for rendering a solution to a problem. 

• Debugging: Detect and identify errors, and then fix the errors when a solution does not work 

as it should. 

• Iteration: Repeat the design process to refine solutions, until the ideal result is achieved. 

• Generalization: Transfer CT skills to a wild range of situations/domains to solve problems 

effectively and efficiently. 

Drawing from the aforementioned model and definitions, we defined CT as the conceptual foundation 

required to solve problems effectively and efficiently. Our model attempts to understand the cognitive 

processes underlying each of these CT facets. While all of these terms are important in CT, iteration 

and algorithms are not necessarily required when building a model for CT in our research. Therefore, 

we only focus on four components in our case study: decomposition, abstraction, debugging, and 

generalization. Table 1 details the CT model we used for mathematics problem-solving.  
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Table 1: Mathematics problem-solving with CT 

Categories of CT Sub-categories* Examples 

Decomposition Read and understand 

problems 

The core of the mathematics problems 

  Stages to solve the problems 

  What kind of questions are there? 

  How are the problems delivered? (Linguistics or Non-

linguistics) 

 Analyze and plan Break down questions into simple steps 

  Break down complex questions into simple stages but 

identify the same questions that can be solved in the same 

ways 

Abstraction Reduction Remove unnecessary information 

  Transfer the problems into a mathematics sentence 

 Decision making Decide what information should be included or reduced 

 Relationship Identify mathematics relationships within diverse contexts 

Generalization Pattern Identify pattern similarities in problem-solving 

  Create special models to the problems 

 Transformation Transfer ideas from one problem to another 

  Conclude characteristics and usage of similar patterns 

Debugging Confirm the answer 

and process 

Assess that the result is right 

  Assess whether the algorithmic solution is good / efficient 

enough 

 Test the model and 

solution 

Solve complex questions 

  Apply the solutions/process in daily life 

*Note that the sub-categories and Examples & Explanations of mathematics problem-solving are task specific. 

• Problem Decomposition is a way to think about problems, algorithms, and processes in terms 

of their component parts. The parts can then be understood, solved, developed, and evaluated 

separately. This makes complex problems easier to solve, novel situations better understood, 

and large systems easier to design.  

Make Cakes 3 

1. Bake cake 

• Put ingredients in bowl (butter, sugar, egg, flour) 

• Mix 

• Pour into baking pan 

 
3 (Tasks taken from https://www.csunplugged.org/en/computational-thinking/). 

https://www.csunplugged.org/en/computational-thinking/
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• Put in oven for 30 mins 

• Take out of baking pan 

2. Make icing 

3. Put on cake 

Note that the overall tasks of making a cake can be divided into several small tasks, each of which 

can be performed easily. For the cake-making problem, we could ask several questions when 

considering different steps: 1) What is the fastest way for making a cake? 2) How much (money) will 

they spend on making one or more cake(s)? 

• Abstraction is a way to make problems or systems easier to think about by removing 

unnecessary information. A key part of it is in choosing a good representation of a system. 

Different representations make different things easy to do. 

When using digital devices, we use abstraction all the time; these devices will hide as much 

unnecessary information as possible. For example, when you are asked to plan the fastest way from 

your house to the university, and now you want to drive (but avoid highways). The digital maps will 

show you a simplified version of the route by leaving out unnecessary details, such as where every 

individual tree in a park is, and only keeping the most relevant information the map reader will need, 

such as roads and street names 

• Generalization is associated with identifying patterns, similarities, and connections, and 

exploiting those features. It is a way of quickly solving new problems based on previous 

solutions to problems and building on prior experience. Asking questions such as “Is this like 

a problem I’ve already solved?” and “How is it different?” is important here, as is the process 

of recognizing patterns both in the data being used and the processes/strategies. Most 

importantly, the pedagogical power of computational generalization comes not just from 

guiding students to use existing models/solutions, but also from enabling students to design, 

build, and assess models/solutions of their own.  

Pattern tasks are important examples of generalization. When you think about the problems, we might 

recognize the similarities and connections between them, and the problems can be solved in similar ways. 

For example, you are required to find the patterns in the graphs and fill in the empty boxes (Figure 1).4 

 

Figure 1: Pattern in the graphs 

 
4 (Tasks taken from: https://www.ontario.ca/page/ministry-education). 

https://www.ontario.ca/pag
https://www.ontario.ca/page/ministry-education
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• Debugging is the systematic application of analysis and evaluation using skills such as testing, 

tracing, and logical thinking to predict and verify outcomes. 

For example, when your coffee machine does not work and you don’t know the reasons, you should 

detect and identify the errors of the coffee machine to fix it（Task taken from one of the researchers 

in our group.) 

Computational Thinking skills & mathematical/everyday problem solving 

In elementary school, students are taught to solve problems accurately and effectively in a variety of 

contexts or to advance from simple to more complex problem-solving (Kenedi et al., 2019). For 

example, when solving financial problems in mathematics, the students are sometimes required to 

make reasonable decisions, including how to spend the least money and finally carry out the solutions 

(Căprioară et al., 2020). The teachers will present different strategies towards one question and 

connect the question to real-life situations (e.g., what is the relationship between the questions and 

our real-life problems? What kinds of questions in real life can use this kind of mathematics 

thinking?), thus cultivating students’ efficiency/accuracy competency in mathematics problem-

solving (Arthur et al., 2018). However, for students, questions such as how to define the types of 

mathematics problems (e.g., addition word problems, mixed operations word problems, comparing 

and sequencing word problems, physical measurement word problems), how to choose the method, 

when to use the method, and how to define different methods are confusing, especially when 

confronted with complex questions (Tambychik & Meerah, 2010). Therefore, to raise students’ 

awareness of numerous methodologies and algorithms in problem solving, the importance of 

abstraction, decomposition, and pattern recognition should be demonstrated in the problem-solving 

process. These practices are consistent with CT’s definitions as described previously. 

Problem solving acts as a bridge between mathematics and the real world by enabling mathematics 

problem-solving within or outside of classrooms or within diverse contexts (e.g., financial contexts, 

literacy contexts, coding contexts, etc.) to address a variety of problems that everyday experiences 

may present to us (Boiler, 1993). One of the main goals of mathematics education is to enable students 

to convert everyday problems into mathematical ones or vice-versa (Fuchs et al., 2004), which can 

also be regarded as a way of assessing their problem-solving abilities (Carraher et al., 1985). These 

everyday math problems can be simple, like adding up coins, keeping track of the hours, or figuring 

out how much something costs. Math is used in everyday life to make things easier and more 

manageable (Kang et al., 2020).  

For example, here is a financial problem: Betty bought toys for $2.00 each. If she buys 5 toys, how 

much money will Betty spend in total?  

Answer: $10.00 - She will spend $2.00 5 times for the toys and that’s $10.00 for all the toys. 

In this study, we used the problem “Chicken and rabbit in the same cage,” one of the well-known and 

amusing problems from an ancient Chinese mathematics book “Sun Zi’s Mathematical Manual” 

(Lam & Ang, 2004). In solving problems, we aimed to let students comprehend the entire process of 

problem solving by using the different CT skills. This problem-solving process can also be used to 

make a preliminary refinement of objects and then highlight changes in quantitative differences 

through various contexts or situations to refine a simple problem-solving pattern. The pattern can 

finally be deduced into a variety of real-life events and problem scenarios, to encourage further 
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internalization of the pattern and complete its creation and application. We must offer students 

adequate time and space during the teaching and learning process, so that they can explore the 

problem-solving process while developing a deeper comprehension of this type of problem called 

“Chicken and rabbit in the same cage.” 

Research questions 

In the study, we tried to understand how CT was integrated into elementary-level mathematics tasks 

in order to investigate its role in the developing of mathematics problem-solving abilities and 

investigate how CT’s practical application can improve mathematics education. Thus, there are two 

research questions:  

RQ1) How can CT skills be employed to facilitate students’ understanding of mathematical concepts 

and procedures? 

RQ2) Which CT skills can promote deep mathematics teaching and learning? 

Methodology 

The researchers at a university at south-east in China and several in-service teachers in public 

elementary schools in China joined together in a research-practice partnership to iteratively develop 

and implement the CT integration curriculum in elementary mathematics. The whole project is 

design-based research, which aims to help elementary teachers in all subjects (e.g., mathematics, 

science, Chinese literacy, English) to understand and integrate CT into their teaching. In this paper, 

we describe the first stage of the project. We limit our report to 4th grade mathematics and implement 

the first round of designing the curriculums—the CT-integration 4th mathematics activities. Thus, we 

analyzed the activities and notes provided by the teachers who designed the activities. For each 

section of the design, the researchers took detailed notes about teachers’ understanding and goals of 

CT integration.  

These data were analyzed through content analysis according to the framework we designed for the 

research. One researcher assigned the initial codes to excerpts of text that pertained to contents by 

teachers to integrate CT and mathematics content, paying specific attention to teachers’ articulated 

goal. 

The teachers in our research group were able to successfully design the CT-integration activities. To 

illustrate this, we present a case from one curriculum designed by Ada (pseudonym), which was a 

general elementary mathematics activity for middle-income students in 4th grade.  

A case study (Yin, 2011) was produced to investigate the Computational Thinking skills in the 

research. This strategy provides a detailed method for systematically studying and informing how CT 

ideas and practices are enacted. These include how CT provides opportunities for students to solve 

problems; how students cultivate problem-solving skills in every step; how the rules of CT are applied 

to the practice in both mathematics teaching and learning.  
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Computational Thinking in mathematics problem-solving  

Question 

Basic Question, from 2.1 – 2.4*: There are a total of 12 chickens and rabbits in one cage and a total 

of 36 legs. How many rabbits are there in the cage?  

*The solutions and explanations for the Basic question are described in sections 2.1 to 2.4 

Complex Question, from 2.5–2.7*: A courier delivers 500 glasses to a company. Both parties agree that 

the shipping fee is 2 cents per glass and if the courier damages one piece, not only will he not get the 

shipping cost, but the courier must also compensate the company 8$ per damaged glass. At the final 

settlement, the courier received a total of 95 dollars for shipping. How many glasses were damaged? 

*The solutions and explanation for the complex question are described in sections 2.5 to 2.6 

Goal of the activity  

Students learn how to use hypothetico-deductive method (HDM) to solve mathematics problems. 

The HDM is a proposed description of the scientific method. According to this method, scientific 

inquiry proceeds by formulating a hypothesis in a form that can be falsifiable, using a test on 

observable data where the outcome is not yet known. The goal is to cultivate students’ problem-

solving abilities while connecting general knowledge to mathematics education. In the problem-

solving process, students need to make assumptions based on prior knowledge of daily life and try to 

figure out the numeral relationship between different objects within mathematics problems, thus 

getting the results and finally applying the problem-solving patterns into complex problems. 

How to teach it? (i.e., the teachers’ intention to see “how” the students’ CT skills 

could be cultivated through the mathematics PS by designing the activity) 

1. Encourage students to activate prior knowledge and connect with the information provided 

by the problem by posing questions like, “How many feet does a rabbit or chicken have?” 

“According to the question, what information are you provided with?” 

CT Generalization of prior knowledge  

We identify the prior knowledge (data) we already know through our general knowledge—

A rabbit has four legs, a chicken has two legs—and connect this data to the question. 

Abstraction of information 

As we move from the generalization of prior knowledge, we transition towards  

 identifying the algorithmic relationships in the problem—animal number: rabbit + 

 chicken = 12; legs: rabbit + chicken = 36. 

2. Based on this information, we can deduce possibilities of how many rabbits or chickens may 

be in the cage.   
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Table 2: 6 rabbits and 6 chickens in one cage 

(Table method) 

Rabbit 12 11 10 9 8 7 6 5 4 3 2 1 0 

Chicken 0 1 2 3 4 5 6 7 8 9 10 11 12 

Legs 48 46 44 42 40 38 36 34 32 30 28 26 24 

 “If there are all rabbits, how many legs are there in the cage?” 

 

Table 3: 12 rabbits and 0 chickens in one cage 

Rabbit 12 11 10 9 8 7 6 5 4 3 2 1 0 

Chicken 0 1 2 3 4 5 6 7 8 9 10 11 12 

Legs 48 46 44 42 40 38 36 34 32 30 28 26 24 

  “If there are all chickens, how many legs are there in the cage?” 

 

Table 4: 12 chickens and 0 rabbits in one cage 

Rabbit 12 11 10 9 8 7 6 5 4 3 2 1 0 

Chicken 0 1 2 3 4 5 6 7 8 9 10 11 12 

Legs 48 46 44 42 40 38 36 34 32 30 28 26 24 

 “Every time you consider a rabbit as a chicken, how many feet are there?”  

 “What is the relationship in the differences observed between the number of chickens or 

rabbits and the number of feet?” 

Explanation 1: It means that every time we consider a two-leg chicken as a four-leg rabbit, we count 

two feet less. 

Explanation 2: It means that every time we consider a four-leg rabbit as a two-leg chicken, we count 

two feet more. 

Using these algorithmic relationships to solve practical problems is an important way to cultivate 

students’ problem-solving abilities.  

Decomposition of a problem 

Identify every step necessary to understand and accomplish the whole task by  

 building up algorithmic relationships, such as proposing the algorithmic   

 relationship between Rabbit-leg and Chicken-leg.  

Debugging of the errors 

Debugging here is the process of finding and fixing errors in making the tables. For 

instance, in section 2.1, when drawing the tables, the students need to test from “if I 

have 12 rabbits and 0 chicken, how many legs will I get?” to “if I have 0 rabbits and 

12 chickens, how many legs will I get?” The debugging process involves testing “what 

if I have 12 rabbits?” “what if I have 11 rabbits?” “what if I have 10 rabbits?”… and 

finally reach to the right answer.  
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List the formulas  

 Assume that there are only chickens in the cage 

• 8 x 2 = 16 (If all the rabbits are chickens, the total is 16 legs) 

• 26 – 16 = 10 (If rabbits are chickens, rabbits with 4 feet are counted as chickens with 2 feet. 

Each rabbit has 2 fewer feet, and 10 feet is the number of feet of the lesser rabbit.) 

• 4 – 2 = 2 (If it’s all chickens, that means a rabbit with 4 legs is a chicken with 2 legs. So, 4 – 

2 means that if a rabbit is regarded as a chicken, 2 feet should be counted less.) 

• 10 ÷ 2 = 5 (How many rabbits are considered as chickens? Are 10 feet missing? Just look at 

how many 2s are in 10—that is to count the rabbits as chickens, so 10 ÷ 2 = 5, which is the 

number of rabbits.) 

• 8 – 5 = 3 (The total number of chickens and rabbits minus the number of rabbits is the number 

of chickens, 8 – 5 = 3 chickens.) 

Decomposition of problem procedures 

Identify every step necessary to solve the problem. 

Propose the hypothetical method for the question 

Just now we solved Case 1 by assuming that the animals were all chickens or all rabbits, and 

this method is called the hypothesis method. This is a basic method to solve the problem of 

“chicken and rabbit in the same cage.” It is also a more common general method in arithmetic 

methods. 

Design intent: The arithmetic of the hypothesis method is difficult for most students to 

understand and master. Using the table method, the combination of numbers and shapes 

guides students to explain the arithmetic more completely and accurately according to the 

diagram, learn to think strategically, and learn to explain effectively, which can make students 

experience the advantages of the hypothesis method more intuitively. 

Generalization of a solution  

Generalize the solution as “Pattern” to solve similar questions in the future. 

Propose the complex question: A courier delivers 500 glasses to a company. Both  

 parties agree that the shipping fee is $2 per glass and if the courier damages one piece, 

 not only will he not get the shipping cost, but the courier must also compensate the company 

 8$ per damaged glass. At the final settlement, the courier received a total of 95 dollars for 

 shipping. How many glasses were damaged? 

 This type of questions aligns with the strand of financial education in mathematics and allows 

the use of the “hypothetical method.” 

 If all glasses are intact 

• 500 x 2 = 1000 (If all the glasses are intact, the courier will get 1,000 dollars) 

• 1000 – 950 = 50 (If broken glasses are intact glasses, 50 dollars is the money of compensation 

and shipping fees for broken glasses.) 

• 2 + 8 = 10 (Assuming it's all intact glasses to be delivered. So, 2 + 8 = 10 means that if we 

regard the broken glasses as the intact ones, 10 dollars should be calculated less.)  
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• 50 ÷ 10 = 5 (50 ÷ 10 = 5 is the number of broken glasses) 

• 500 – 5 = 495 (the number of intact glasses) 

Generalize a solution from one basic problem to another 

Recognize the pattern from a “simple” pattern into complex questions. 

Connecting the daily-life problems (e.g., connecting the financial problems with mathematics) with 

the “chicken and rabbits in the same cage” problem introduces the hypothetical method and guides 

students to deepen their understanding of algorithmic relationship. 

The procedures applied can serve as pilots to enhance CT. These contribute to students’ visualization 

of the procedures regarding problem-solving, thus simplifying the mathematical relationships 

involved in the procedures. 

Hypothesizing and generalizing use the same method to solve the problems but involve different 

variables. Thus, the generalization cannot be applied immediately, and our understanding of the 

problem cannot be simplified by simple calculations before considering all the data. Therefore, we 

use abstraction and decomposition to reconstruct the algorithms and patterns offered in the simple 

question to better understand the mathematical relationships and complete the problem-solving. As 

such, we can design a fresh arithmetic solution. In the process, students are encouraged to design, 

build, and assess solutions for themselves rather than using the existing solutions and prior 

algorithmic relationships. This automation inspired by the problem-solving process is key to 

developing CT skills, which can be commonly found and applied to other procedures of problem-

solving within mathematics education. 

Extend CT to complex problem solving 

While solving complex problems provided by the learning activities in class, there is often much 

ambiguity within the solving process. This ambiguity arises from the need to recognize patterns and 

relationships within the mathematics problem-solving process (Kellman et al., 2010). Additionally, 

the diverse relationships between different methods or different questions make it difficult for 

elementary students (i.e., From K-1 to K-6) to construct patterns since the elementary level is a 

pathway for students to progress from specific questions to abstract questions (Greeno, 2021). In this 

“rabbit – chicken – leg” activity designed by the teachers, complexity is reflected in the generalization 

of pattern usage. Compared to the simple question in the activity, the complex one requires students 

to reconsider their prior knowledge and algorithmic relationships for calculating. 

The definition and application of CT do not come directly from the solving process and skills, but 

rather from the cultivation of thinking at the cognitive level (Tsarava et al., 2022). The hypothetical 

solutions used in mathematical problem solving are composed of generalization, abstraction, 

decomposition, and other techniques. However, even simple data provided through the problem can 

reveal diverse methods for arriving at the answers. The relationships and conditions that we need to 

consider are distinctive of CT in mathematics. CT provides efficiency, consistency in procedures, and 

accuracy while also providing students with an orderly and cultivating atmosphere to connect 

mathematics problems to daily life (Shute et al., 2017). Thus, for teaching problem solving within 

mathematics, we can find the traces of CT and explore the potency of CT. 
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Grover and Pea (2013) specify that extensive research over decades has focused on issues related to 

teaching and learning skills, concepts, and practices relevant to CT. Therefore, researchers should not 

only discover the potency of CT in mathematics classrooms but also investigate the traces and potency 

of CT in other disciplines. By doing so, we can avoid constricting the implementation of CT to one 

classroom or school subject and instead see the efficiency and influences of CT across various areas. 

Conclusions 

In this study, we observed and analyzed mathematics problem-solving procedures at the 4th grade 

level to inform how CT ideas and practices are enacted. This included how CT can be leveraged to 

provide opportunities for students to apply their problem-solving skills efficiently and how these 

skills can be cultivated at different stages.  

RQ1) Practically, findings from this study highlighted how CT can be displayed in both mathematics 

teaching and learning, as well as the challenges associated with the latter. It seems the ability to 

embrace CT is crucial for mathematics problem-solving, especially when planning to teach problem-

solving. 

RQ2) Practicing the application of CT in problem-solving learning situations in mathematics could 

potentially facilitate the transfer of these skills in other disciplines. The ability to embrace CT is 

crucial for mathematics problem-solving, as it can effectively guide the preparation of procedural 

instructions regarding the development of mathematical skills and understanding. The awareness and 

application of CT in mathematics problem-solving process could enhance students’ efficiency in 

solving more complex and diverse problems, thus improving their problem-solving skills in various 

disciplines outside of mathematics (e.g., literacy, science, arts, etc.).  

The integration of CT into mathematics education has, more often than not, been ignored, since CT 

has not been well-defined in specific mathematics teaching and learning (Selby & Woollard, 2013). 

Furthermore, teachers have no access to the resources of CT (Rich et al., 2020). However, CT 

provides an opportunity for teachers to instruct the students procedurally and creatively. Teachers 

could introduce digital devices into every step of the solving process (e.g., use computers to test the 

results by inputting the numbers of the rabbits/chicken). Besides, if other aspects of CT can be 

integrated into the classrooms, after considering social needs, teachers’ competencies, and students’ 

skills, CT can have more meaning for mathematics education and even other disciplines (Bundy, 

2007; Rich et al., 2019). 
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