UNIVERSITY OF NEW BRUNSWICK and UNIVERSITÉ DE MONCTON

NEW BRUNSWICK MATHEMATICS COMPETITION

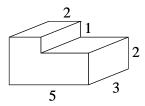
22 mai 1998

8^e année

PARTIE A

1.	Combien de minutes y a-t-il entre 22h52 aujourd'hui et 1h48 demain?	
	(A) 124 (B) 176 (C) 270 (D) 904 (E) 1200	
2. Cinq marchands vendent des raisins à des prix différents. Parmi les choix su représente le meilleur achat?		
	(A) 2,5 kg pour 1 \$ (B) 5 kg pour 2,30 \$ (C) 1 kg pour 0,44 \$ (D) 10 kg pour 4,20 \$ (E) 7,5 kg pour 3,10 \$	
3.	Une voiture, qui voyage à une vitesse moyenne de 40 km/h , prend $1\frac{1}{2} \text{ h}$ pour parcourir une certaine distance. Combien de temps serait nécessaire pour parcourir la même distance à une vitesse moyenne de 60 km/h ?	
	(A) $2/3$ h (B) $3/4$ h (C) 1 h (D) $2\frac{1}{4}$ h (E) 3 h	

- 4. Une table carrée est telle qu'il est possible d'asseoir une seule personne par côté. Si 20 de ces tables sont collées ensemble de façon à former une longue table étroite, combien pourra-t-on asseoir de personnes?
 - (A) 22 (B) 40 (C) 42 (D) 88 (E) aucune de ces réponses
- 5. Soit y un nombre positif et x = -y. Lequel des énoncés suivants est faux?


(A)
$$x^2y > 0$$
 (B) $x + y = 0$ (C) $xy < 0$ (D) $\frac{1}{x} - \frac{1}{y} = 0$ (E) $1 + \frac{x}{y} = 0$

	multiples exacts de 4?	
	(A) 20 (B) 21 (C) 24 (D) 25 (E) 26	
7.	7. Soit un rectangle de 150 cm de long par 50 cm d m^2 ?	e large. Quel est l'aire de ce rectangle en
	(A) 0,75 (B) 7,5 (C) 75 (D) 750 (E	7 500
8.	8. Quinze geais bleus et quatorze orioles sont perchés et 2 orioles sont perchés sur chacun des arbres. Si geais bleus, quel est le nombre maximum d'oiseaux	aucun des arbres n'a plus d'orioles que de
	(A) 11 (B) 12 (C) 13 (D) 14 (E) 15	
9.	9. Si Michael Jordan a une moyenne de points par par de points a-t-il besoin dans les 50 parties restantes points par partie?	
	(A) 1000 (B) 1500 (C) 1600 (D) 3000	(E) aucune de ces réponses
10.	10. Un magasin de vêtements vend des chemises le n des ventes totalisant 300 \$. À midi, le prix des che chemises sont vendues durant l'après-midi. Le tota	emises est baissé à 4 \$ et deux fois plus de
	(A) 540 \$ (B) 580 \$ (C) 780 \$ (D) 840	\$ (E) 1080 \$

6. Parmi les entiers qui se trouvent, inclusivement, entre 2 et 21, quel est le pourcentage des

PARTIE B

11. Le volume du solide représenté ci-contre est

- (A) 12
- (B) 30
- (C) 35
- (D) 36
- (E) 40

12. Dans une classe, 2/5 des garçons et 1/3 des filles portent des lunettes. Quelle est la proportion des enfants de cette classe qui portent des lunettes?

- (A) 3/68
- (B) 2/15
- (C) 11/30
- (D) 11/15
- (E) information insuffisante

13. Combien y a-t-il de nombres à 3 chiffres qui contiennent exactement un zéro?

- (A) 81
- (B) 100
- (C) 162
- (D) 200
- (E) aucune de ces réponses

14. On considère 5 nombres entiers consécutifs A, B, C, D et E. Si B + C + D = 63, alors A + B + C + D + E est égal à:

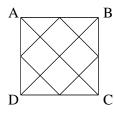
- (A) 70
- (B) 84
- (C) 105
- (D) 120
- (E) information insuffisante

15. Quel est le dernier chiffre du nombre $(7^5)^3$?

- (A) 1
- (B) 3
- (C) 5
- (D) 7
- (E) 9

16. Si a, b, et c sont 3 nombres avec a > b, lequel des énoncés suivants est toujours vrai?

- (A) $\frac{1}{a} > \frac{1}{b}$

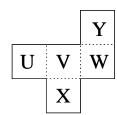

- (B) ac > bc (C) $a^2 > b^2$ (D) a + c > b + c (E) $\frac{1}{a} < \frac{1}{b}$

17.	Habituellement, le taux de consommation d'essence des automobiles est défini comme étant
	le nombre de litres d'essence nécessaire pour parcourir 100 km. Si un automobile utilise 1
	litre d'essence pour parcourir 12,5 km, quel est le taux de consommation?

- (A) 5 (B) 7 (C) 8 (D) 10 (E) 12,5
- 18. Laquelle des expressions suivantes est la plus petite si n > 5?
 - (A) $\frac{5}{n}$ (B) $\frac{5}{n+1}$ (C) $\frac{5}{n-1}$ (D) $\frac{n}{5}$ (E) $\frac{n+1}{5}$
- 19. Un ballon rebondit à 2/3 de la hauteur de laquelle il tombe. Si le second rebond est de 72 cm, quelle est la hauteur de laquelle est initialement tombé le ballon?
 - (A) 32 (B) 48 (C) 108 (D) 162 (E) aucune de ces réponses
- 20. M. Martin a acheté deux ballons et les a ensuite revendus 1,20 \$ chacun. D'après le prix payé, il a fait un profit de 20% sur une des ventes et une perte de 20% sur l'autre. Sur la vente des deux ballons, il a réalisé:
 - (A) ni gain, ni perte (B) une perte de 4 cents (C) un gain de 4 cents
 - (D) une perte de 10 cents (E) un gain de 10 cents

PARTIE C

21. Soit le carré ABCD. Combien y a-t-il de triangles sur ce diagramme?



- (A) 8
- (B) 12
- (C) 16
- (D) 20
- (E) aucune de ces réponses

22. Soit A = 6a3 et B = 2b5, deux nombres à trois chiffres. Si A + B est divisible par 9, une valeur possible de a + b serait?

- (A) 2
- (B) 9
- (C) 12
- (D) 18
- (E) aucune de ces réponses

23. La feuille ci-contre se plie le long des lignes pointillées et forme une boîte ouverte dont l'ouverture est vers le haut. Laquelle des lettres se retrouve au-dessous?

- (A) U
- (B) V
- (C) W
- (D) X
- (E) Y

24. $\frac{1}{98} + \frac{99 \times 97}{98} - 98 =$

- (A) -1 (B) $-\frac{1}{98}$ (C) 0 (D) $\frac{1}{98}$
- (E) 1

25. Quelle est la valeur de l'expression suivante:

$$\frac{2^{310} - 2^{301}}{3^4 \cdot 2^{300}}$$

- (A) $\frac{2^3}{3^6 \cdot 2^{300}}$ (B) $\frac{512}{81}$ (C) $\frac{1022}{81}$ (D) $\frac{1024}{81}$

- (E) aucune de ces réponses

26. À une altitude de 300 m, la vitesse horizontale d'un avion est de 200 km/h tandis que sa vitesse verticale est inconnue. Supposons que sa vitesse horizontale demeure constante, quelle doit être la vitesse moyenne verticale minimum de l'avion, en km/h, pour éviter une montagne de 500 m de hauteur qui se situe à une distance horizontale de 1 km de l'avion?

(A) 30

- (B) 40
- (C) 100
- (D) 200
- (E) aucune de ces réponses