Development of regional height to diameter allometric equations for naturally-regenerated, mixed species, and multi-cohort forests of the Acadian Region

Baburam Rijal Graduate Research Assistant

Aaron Weiskittel Assistant Professor of Biometrics and Modeling

> Eastern CANUSA Edmundston, NB October 14-16, 2010

Outline

Introduction

- Growth and yield models
- Acadian Forest

Objectives

Methods

Results

- Summary statistics
- Model comparisons (Mean bias, RMSE, Residuals)

Conclusions

Introduction

Growth and Yield Models

- Mathematical relations
 among the growth attributes
 (e.g. age, diameter, height,
 volume) use for predictions
- Allometric equations are a key component
 - Commonly use Diameter at Breast Height (DBH)

Growth and Yield Models

- More than 75 growth equations are well described (Kiviste 1988), for growth models
- Only a few are common in practice and there is not a universal function that would fit for all purposes,
- Forest Vegetation Simulator (FVS) is widely used forest growth model across US and many parts of Canada,
- FVS-NE variant is used in Acadian forest management

Acadian Forest

A transition zone between boreal conifer forest in north and hardwood of south,

Different forest types:

Mixed conifer (e.g. Spruce-Fir),

Mixed hardwoods (e.g. Aspen-Beech)

Mixed Hardwood and Conifer (e.g. Oak-Pine)

Naturally regenerated,

All aged multiple species,

Long history of selection cutting

Forest Growth and Yield in Acadian Forest

- FVS is a model widely used in Northeast US
 - Wykoff and Curtis as well as Arney models to estimate missing tree heights,
 - Existing FVS model are giving bias in long-term predictions
- In addition, regional allometric equations specific to the Acadian Region are not available

Present study:

Diameter and Height Equations in Acadian Region

Objectives and Methods

Objective: restructure DBH-HT equation for better fits & predictive capacity of 15 commercially important tree species of Acadian Region,

Methods

- 30 different datasets of about 16,000 stands in the Acadian Region
 that includes data from Maine, New Brunswick, Nova Scotia, and
 Quebec
- Permanent research and inventory plots

Methods: Species

- 15 Species: Conifer
 (7) and Hardwood
 (8),
- Selected based on availability and abundance
- Sample covers 16,000 stands; 1.5 million individual tree

Code	Common name	Scienfic name
AB	American Beech	Fagus grandifolia
GB	Grey Birch	Betula populifolia
PB	Paper Birch	Betula papyrifera
QA	Quaking Aspen	Populus tremuloides
RM	Red Maple	Acer rubrum
RO	Northen Red Oak	Quercus rubra
SM	Sugar Maple	Acer saccharum
YB	Yellow Birch	Betula alleghaniensis
BF	Balsam Fir	Abies balsamea
BS	Black Spruce	Picea mariana
EH	Eastern Hemlock	Tsuga canadensis
RS	Red Spruce	Picea rubens
WC	White Cedar	Thuja occidenstalis
WP	White Pine	Pinus strobus
WS	White Spruce	Picea glauca

Methods: Model Form and Fitting

Base Model: Chapman-Richards

 $HT = 1.3 + a0 * (1 - e^{-b0 * DBH})^{c0}$

Where,

- *HT* is Total height (m),
- *DBH* is Diameter at breast height (cm),
- a0, b0 and c0 are constants (model parameters),

added covariates:

stand level covariates to capture regional variation,

- Crown competition factor (CCF)
- Basal area larger than subject tree (BAL),

Methods: Model Form and Fitting

Mixed Effects Model with random effect in asymptote,

$HT = 1.3 + (a0 + A0 + a1 * CCF + a2 * BAL) * (1 - e^{-b*DBH})^{c}$

Where, *a0*, *b0* and *c0* are fixed parameters, *a1* and *a2* are fixed parameters associated with covariates CCF and BAL respectively, *A0* is random effect parameters set for asymptotic parameters

Design and Model Fitting

Three level hierarchical design: Source (dataset), Stand, and Year

General nonlinear least square (GNLS) with varying variance function,

Non-linear mixed effects (NLME)

Methods: Model Comparisons

Model comparison tools

Bias

Observed HT - Fitted HT

Model Fit

 $R^2 = 1 - \frac{SSE/df_{SSE}}{SST/df_{SST}}$

Model Predictive capacity (Bootstrap)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{i=n} (H_i - \widehat{H_i})^2}{n}}$$

Summary Statistics of Diameter at Breast Height and Total Height

6.8

6.4

7.5

7.9

6.5

7.1

7.1

7.7

6.8

6.3

7.6

6.7

7.0

8.8

6.8

Species	No. of	No. of	Total			DRH	$\left(cm \right)$	
species	Source	Stand	Obs.					
Hardwood					lin	Mean	Max	SD
AB	23	3388	25581	(6.1	17.8	43.8	6
GB	18	1444	7774		2.9	14.4	38.2	6
PB	33	8808	82787	(0.7	14.3	39.3	7
QA	19	2415	8625	(0.5	17.6	44.2	7
RM	30	11760	144322		3.5	16.4	42.2	6
RO	13	1297	7501		9.2	18.6	46.5	7
SM	23	4439	62616	4	4.1	17.0	46.7	7
YB	30	6194	35961		3.4	17.7	47.8	7
	Con	ifer						
BF	33	16078	497162	(0.7	12.9	36.3	6
BS	26	3889	212852	(0.7	10.8	32.3	6
EH	24	3074	19802	2	4.1	19.4	49.3	7
RS	26	9999	200143		3.3	16.7	41.3	6
WC	20	4176	33521	4	5.1	19.8	45.3	7
WP	24	3768	23502	2	4.2	19.3	55.9	8
WS	31	4683	69891		2.1	15.9	39.9	6

Results

Conifers

(red are significant at 5%, CI in parenthesis)

Species	EVC	FVS-	Chapman-	
species	ГУЗ	Refitted	Richards	
BF	-1.394	0.0605	0.0001	
	(-1.41.39)	(0.05-0.07)	(0.00-0.01)	
BS	-1.376	0.0871	0.001	
	(-1.381.37)	(0.08-0.09)	(-0.04-0.04)	
EH	-2.308	0.0096	0.0011	
	(-2.352.26)	(-0.3-0.06)	(-0.04-0.04)	
RS	-1.582	0.018	0.0001	
	(-1.591.57)	(0.01-0.03)	(-0.01-0.01)	
WC	-2.982	0.003	0.0001	
	(-3.012.98)	(-0.03-0.03)	(-0.03-0.03)	
WP	-2.883	0.0187	-0.001	
	(-2.922.84)	(-0.02-0.06)	(-0.04-0.04)	
WS	-1.959	0.0228	0.001	
	(-1.981.94)	(0.01-0.04)	(-0.02-0.02)	

FVS Bias (m.) – Eastern Hemlock

Significant negative bias

Improvement in bias

Hardwoods

(red are significant at 5%,	, CI in parenthesis))
-----------------------------	----------------------	---

Creation	EVC	FVS-	Chapman-	
species	ГЛЭ	Refitted	Richards	
AB	-2.976	0.0036	0.0018	
	(-3.012.94)	(-0.03-0.04)	(-0.03-0.04)	
GB	-0.986	0.0359	0	
	(-1.060.99)	(-0.03-0.1)	(0.060.06)	
PB	-3.124	0.0818	0.0041	
	(-3.14-3.11)	(0.06-0.10)	(-0.01-0.02)	
QA	-2.756	0.0655	-2.00E-04	
	(-2.832.69)	(0.01-0.13)	(-0.06-0.06)	
RM	-2.959	0.0219	0.0024	
	(-2.982.94)	(0.01-0.04)	(-0.01-0.01)	
RO	-3.946	-0.0016	-3.00E-04	
	(-4.013.78)	(-0.07-0.07)	(-0.02-0.02)	
SM	-3.860	0.0173	0.001	
	(-3.883.86)	(-0.01-0.04)	(-0.02-0.02)	
YB	-4.017	0.0273	0.001	
	(-4.053.99)	(-0.00-0.06)	(-0.03-0.03)	

Results

R square produced by two competing models

Spacias	FVS-	Chapman-	
species	Refitted	Richards	
AB	0.343	0.356	
GB	0.388	0.445	
PB	0.633	0.672	
QA	0.589	0.603	
RM	0.39	0.452	
RO	0.404	0.449	
SM	0.42	0.467	
YB	0.449	0.485	
BF	0.743	0.771	
BS	0.824	0.853	
EH	0.404	0.433	
RS	0.555	0.597	
WC	0.3	0.34	
WP	0.526	0.55	
WS	0.634	0.679	

Mean FVS : -2.883m. (significant at 5% credible interval) Mean CR Bias: 0.001 (not significant at 5% Credible interval)

Result

Model Comparison: RMSE

RMSE improved by GNLS-16%-43%, and NLME 33%-67%

Result

Model Comparison: Residuals

As predicted height increases, bias increases

Conclusions

• FVS models were significantly biased in the Acadian Region.

- Chapman-Richards model form was superior
 - Non significant (improved in) bias across the predicted height, and geographic region,
 - Covariates useful for localizing predictions
 - Mixed effects improved predictions, even when fixed effect parameter estimates were used

• Future work will focus on the applicability of these equations to thinned stands and the development of regional height to crown base equations

Thank You