

Trees reach a point where *height growth* slows/ceases

Tops characteristically flatten

... as well as stem increment

40

35

30

Growth (g 100mg⁻¹)

10

0

- Harvest age
- Carbon sequestration

Woody tissue respiration?

Supply-side explanations:

Physical or resource limitations

- Reduced nutrient supply
- Reduced
 photosynthesis
 (carbon supply)
- Hydraulic-limitations

Supply-side hypotheses in the Acadian Forest

Parameter	Juvenile	Mid- aged	Old
Foliar N (%)	1.0 a	0.94 ab	0.90 b
k _{tree} (μmol m ⁻² s ⁻¹ MPa ⁻¹)	3.9 a	2.1 b	2.3 b

Red spruce multi-cohort population Penobscot Experimental Forest

Moving forward Reciprocal grafting: a seven-year experiment

Exchanging scions between age classes to control for size & complexity effects

- Extension growth was greater for all scions on mid-aged understock
- Branches cm⁻¹ were greater for all scions on old understock

Reciprocal grafting

- Old, mid-aged and young scions grafted into the tops of mid-aged and old trees took on the growth characteristic of the understock
- Scions of all age classes grafted into tops of midaged and old trees exhibited equal biomass: identical growth potential

Natural branches on 165 y rootstock

Juvenile scions 7 y post-grafting

A look to the demand side

- Non-structural carbohydrates (NSC) indicate C availability relative to sink demand
- And old trees show no indication of Csupply limitations

Tree life stages and Evolutionarily / Ecologically Stable Strategies

Germinants must find sources of water, nutrients and minimal light

- Limited ability to sample environment
- Favors intrinsic genetic program

Seedlings:

- Maximize light capture
- Maintain understory carbon balance
- Resources allocated to branchiness

Saplings:

- Gap detection
- Refocus

 allocation to
 main stem
- Branchiness greatly decreases
- 'Low cost' foliage

Mid-age: The race to the top

 Resource allocation to height (extension) growth

 Bolewood production (PAI) at maximum

Old age

- 'Canopy-height'
- Extension growth slows

- Resource allocation
 - Branchiness
 - Robust foliage
 - Reserves

According to ESS height growth decreases:

- 'Emergents' face greater risk
- Minimizing strain minimizes stem cost
- ESS: tree maintains niche

Ecologically Stable Strategy model

- Lower mutual canopies favored by higher physical stress and higher probability of stochastic disturbance events
 - The feedback effect
- Height growth favored by 'runaway' competition in relatively benign environments
 - The feed-forward effect

Predictions of Ecologically Stable Strategy hypothesis:

- Trees have sitespecific mean heights
- Maximizes <u>long-</u> <u>term fecundity</u> by lowering
 - competitive costs
 - risk to investment
- Next chapter: Where does the carbon go?

Our gratitude is extended to:

- The National Science Foundation, Northeastern States Research Cooperative USDA Forest Service and the Maine Agriculture and Forest Experiment Station for their support of this research
- The Northeastern Forest Experiment Station, and the Wind River Experimental Forest, USDA Forest Service, for the use of their stands at the Penobscot Experimental Forest

