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A new research project on spectral analysis which aims to characterize the vertical strati�cation of element abun-
dances in stellar atmospheres of chemically peculiar (CP) stars, is discussed in detail. Some results on detection
of vertical abundance strati�cation in several slowly rotating main sequence CP stars are presented and considered
as an indicator of the e�ectiveness of the atomic di�usion mechanism responsible for the observed peculiarities of
chemical abundances. This study is carried out in the frame of Project VeSElkA (Vertical Strati�cation of Elements
Abundance) for which 34 slowly rotating CP stars have been observed with the ESPaDOnS spectropolarimetre at
CFHT.
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introduction

At certain stages of stellar evolution, some stars
show peculiarity of spectral lines in their spectra that
argues in favour of an enhanced or depleted abun-
dance of several chemical species in their stellar at-
mospheres with respect to the solar abundance. Ab-
normally strong lines of silicon in α2 CVn were �rst
reported by Antonia Maury [42], while the strong
lines of ionised silicon and ionised strontium were
found by Annie Cannon [9] in some bright south-
ern stars in the process of determining their spectral
class. The �rst systematic study and classi�cation of
stars of spectral classes B-F with abnormally strong
lines of various chemical species was performed by
Morgan [45, 46]. To explain the mystery of the
observed abnormally strong lines, Shapley [56] sug-
gested the possibility of abundance abnormalities in
the atmospheres of these stars. Several decades later,
this idea was con�rmed by the results of a di�eren-
tial coarse analysis using the curves of growth [7].
It should be noted, that the observed peculiar abun-
dance of chemical species is only related to the stellar
atmosphere and does not re�ect the chemical com-
position of the entire star.

We turn our attention to two types of stars with
abundance anomalies: blue horizontal-branch (BHB)
stars that burn helium in their core and hydrogen in
a shell [44], and main sequence stars that burn hy-
drogen in their core. BHB stars are found mostly

in globular clusters. Comprehensive surveys show
that the hot BHB stars have abundance anoma-
lies as compared with the cool BHB stars in the
same cluster [16, 19]. Hot BHB stars show en-
hanced abundances of iron, magnesium, titanium,
phosphorus, and depleted helium [5, 6]. Surveys
of rotational velocities of BHB stars indicate that
stars with Teff ≥ 11500K possess modest rotation
with V sin i < 10 km s−1, while the cooler stars ro-
tate more rapidly on average [48, 54]. Slow rotation
is an indicator of a hydrodynamically stable atmo-
sphere and the observed abundance peculiarities as
well as the brighter u-magnitudes (as compared to
the theoretical prediction for u-magnitudes based on
stellar evolution models) of hot BHB stars [18] can
be explained in the frame of atomic di�usion mech-
anism [43] at play in their atmospheres. Competi-
tion between the gravitational and radiative forces
in a hydrodynamically stable atmosphere can cause
accumulation or depletion of chemical elements at
certain optical depths and lead to a vertical strat-
i�cation of element abundances. Hui-Bon-Hoa et
al. [23] have constructed stellar atmospheric mod-
els of hot BHB stars with vertical strati�cation of
elements, that successfully reproduced some of the
anomalies mentioned above. Analysing the avail-
able high resolution spectra of some hot BHB stars,
Khalack et al. [26, 27] have detected vertical strat-
i�cation of the abundance of several chemical ele-
ments, including iron. The stellar atmosphere mod-
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els of hot BHB stars calculated self-consistently with
abundance strati�cations predict that the iron abun-
dance strati�cation decreases as a function of Teff
and becomes negligible for BHB stars hotter than
Teff ' 14000K [37]. This theoretical result is consis-
tent with the detected iron abundance slopes found
by Khalack et al. [26, 27] from spectral line analysis
of hot BHB stars with di�erent e�ective tempera-
tures.

A signi�cant portion of upper main sequence
stars show abundance peculiarities of various chemi-
cal species and are commonly named chemically pe-
culiar (CP) stars [49]. George Preston [49] intro-
duced this collective term and divided the CP stars
in four groups: CP1 metallic-line stars (type Am-
Fm), CP2 magnetic peculiar B and A-type stars
(type Bp-Ap), CP3 mercury-manganese stars (type
Hg-Mn) and CP4 helium weak stars. Following a
large number of extensive studies of CP stars, new
types of abundance peculiarities have been discov-
ered and an extension of Preston's classi�cation was
proposed [39, 58]. In this new scheme, the CP4
group includes only magnetic He-weak stars (Sr-Ti-
Si branch), while the non-magnetic He-weak stars
(P-Ga branch) are placed in the group CP5. The
He-rich magnetic stars (usually having spectral class
B2) are placed in the group CP6. The CP7 group
is reserved for the non-magnetic He-rich stars. In
this classi�cation the odd numbers correspond to
non-magnetic stars, while groups with the even num-
bers contain stars that possess a detectable magnetic
�eld. More details about the history of discovery and
study of CP stars can be found in [21].

An extensive list of known and suspected Ap,
HgMn and Am stars was recently published by Ren-
son & Manfroid [55], while a list of known magnetic
CP stars has been compiled by Bychkov et al. [8].
Some upper main sequence CP stars show variabil-
ity of absorption line pro�les in their spectra with
the period of stellar rotation due to horizontal inho-
mogeneous distributions of elements' abundance in
their stellar atmosphere [31]. One can see the peri-
odic (days, months, years) variation of spectral line
pro�les with the axial rotation of a CP star due to the
variation of contribution from di�erent parts of the
stellar atmosphere to these lines. Ap stars also show
signatures of a strong magnetic �eld and its struc-
ture correlates with the patches of overabundances
(or underabundances) of certain elements [32, 57].
Observationally, it was shown that the properties of
the line pro�le variability due to abundance patches
as well as the magnetic �eld structure of Ap stars
do not change during several decades [41, 50] and,
therefore, it is usually assumed that stellar atmo-
spheres of Ap stars are hydrodynamically stable.
In a hydrodynamically stable atmosphere the pres-
ence of a magnetic �eld can intensify accumulation
or depletion of chemical elements at certain optical

depths [2, 53, 60]. From the analysis of line pro�les
of ionised iron and ionised chromium in the spectra
of β CrB, Ryabchikova et al. [51] have shown that
iron and chromium abundances increase towards the
deeper atmospheric layers. This can be explained in
terms of the mechanism of atomic di�usion [43]. It
appears that the light and the iron-peak elements are
concentrated in the lower atmospheric layers of some
Ap stars (HD133792 and HD204411) [52]. Mean-
while the rare-earth elements (for example, Pr and
Nd) are usually pushed into the upper atmosphere
of Ap stars [40].

Detection of vertical strati�cation of element
abundances in stellar atmospheres of stars is an in-
dicator of the e�ectiveness of the atomic di�usion
mechanism that may be responsible for the observed
abundance peculiarities. The vertical strati�cation
of element abundances in a hydrodynamically stable
atmosphere can be estimated through the analysis
of multiple line pro�les that belong to the same ion
of the studied element [24, 25] using the ZEEMAN2
code [35], for instance. This approach has been
successfully employed to study the vertical abun-
dance strati�cation in the atmospheres of several
BHB [26, 27] and HgMn stars [61].

To search for the signatures and to study the
abundance strati�cation of chemical species with
optical depth in the atmospheres of CP stars, we
have initiated Project VeSElkA, which means �rain-
bow� in Ukrainian and stands for Vertical Strat-
i�cation of Element Abundances. Slowly rotating
(V sin i < 40 km/s) CP stars of the upper main se-
quence were selected for our study using the cat-
alogue of Ap, HgMn and Am stars of [55]. This
limitation of the rotational velocity is imposed with
the aim of increasing the probability for a star to
have a hydrodynamically stable atmosphere, where
the atomic di�usion mechanism can produce vertical
strati�cation of element abundances. A low value of
V sin i also leads to narrow and mostly unblended
line pro�les in the observed spectra, which is bene�-
cial for our abundance analysis.

observations and data reduction

The selected slowly rotating CP stars and
two normal main sequence stars (used as ref-
erence stars) have been observed during 2013�
2014 with ESPaDOnS (Echelle SpectroPolarimet-
ric Device for Observations of Stars) at the CFHT
(Canada-France-Hawaii Telescope) employing the
deep-depletion e2v device Olapa. The instrument
performances as well as the optical characteristics of
the spectropolarimetre are described in [14].1

ESPaDOnS acquires high resolution (R = 65000)
Stokes IV spectra throughout the spectral range from
3700Å to 10500Å in a single exposure [13]. In order
to be able to �nd convincing signatures of vertical

1For more details about this instrument, the reader is invited to visit www.cfht.hawaii.edu/Instruments/Spectroscopy/Espadons/
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strati�cation of element abundances from the spec-
tral analysis, we require spectra with high signal-
to-noise ratio (close to one thousand per bin in the
spectral region around 5150Å).

Table 1: CP stars observed with ESPaDOnS in the frame
of Project VeSElkA.

name MV V sin i, km/s type
HD2628 5.22 21 A7
HD6397* 5.65 10 F3m Sr
HD12869* 5.03 18 A2m
HD15385 6.19 29 A5
HD22920 5.53 39 B8p Si
HD23878 5.24 24 A1
HD24712 6.00 22 A9p Sr-Cr-Eu
HD25267 4.66 28 B8.5p Si
HD40394 5.71 18 B9.5 Si-Fe
HD53929 6.09 25 B9 Mn
HD68351* 5.61 33 A0 Si-Cr
HD71030 6.10 9 F6
HD83373 6.39 28 A1 Sr-Cr-Eu
HD90277 4.73 34 F0
HD95608 4.41 21 A1m
HD97633 3.35 23 A2 Sr-Eu
HD110380 3.48 23 F2m
HD116235 5.89 26 A2m
HD148330 5.75 18 A2 Si-Sr
HD157087 5.37 15 A4
HD158261* 5.94 17 A1
HD159082* 6.45 22 B9 HgMn
HD164584 5.34 12 F3
HD166473 7.92 20 A8p Sr-Cr-Eu
HD170973 6.41 18 A0p Si-Cr-Sr
HD174933 5.40 20 B9 HgMn
HD176232 5.89 18 A8 Sr
HD186568 6.06 15 B9
HD190229* 5.66 8 B9 HgMn
HD191110 6.18 0 B9.5
HD196821 6.08 22 A0
HD207840 5.77 15 B8 Si
HD209459 5.82 14 B9.5
HD214994 4.79 14 A1
HD223640 5.18 28 B7p Si-Cr-Sr
HD224103 6.21 28 B9 Si

∗Known spectroscopic binary stars

Table 1 presents a list of the observed slowly ro-
tating chemically peculiar stars and some normal up-
per main sequence stars. The �rst, second and third
columns provide respectively the name of a star, its
apparent visual magnitude and V sin i value, while
the fourth column contains information about its
spectral type. The spectral classes of stars selected
for the Project VeSElkA are given in Table 1 taking

into account the data from [55], SIMBAD Astronom-
ical Database2 and the estimates of e�ective tem-
perature and surface gravity obtained by Khalack &
LeBlanc [30]. Some of the observed program stars
are spectroscopic binaries. Our sample also includes
several HgMn stars and magnetic Bp-Ap stars. For
each star, we have obtained at least two spectra to
verify if it is a binary star, or if the observed line
pro�les are variable with the phase of stellar rota-
tion due to horizontal strati�cation of element abun-
dances.

The obtained spectra have been reduced using the
dedicated software package Libre-ESpRIT [12] which
yields both the Stokes I spectrum and the Stokes V
circular polarisation spectrum. The Stokes V spec-
tra are required to estimate and study the stellar
magnetic �eld and its potential contribution to the
atomic di�usion mechanism [60]. The level of con-
tinuum (free from absorption and emission lines) in
each echelle order of the Stokes I spectra was ap-
proximated with a polynomial function and its co-
e�cients were derived. Using this polynomial func-
tion, the Stokes IV spectra were normalized resulting
in a continuum with variations no larger than two to
three percent. To estimate the e�ective temperature
and gravity of the observed stars (see next section),
we have used their non-normalized spectra [30].

estimation

of fundamental parameters

of stellar atmospheres

The abundance analysis of normalized polarimet-
ric spectra has been carried out employing a modi-
�ed version [24, 25] of the ZEEMAN2 radiative transfer
code [35], which requires atomic data and a synthetic
stellar atmosphere model (local temperature, pres-
sure, electronic density, etc. relative to atmospheric
optical depth) characterized by the e�ective temper-
ature, surface gravity and metallicity to simulate the
synthetic line pro�les. The atomic data provided by
the VALD-2 [34] and NIST [33] databases have been
used for our simulations. To determine the parame-
ters of stellar atmospheres, one can �t the observed
Balmer line pro�les with synthetic spectra from a
grid of stellar atmosphere models with di�erent val-
ues of Teff , log g and metallicity. The stellar atmo-
sphere models used here were calculated with the
PHOENIX atmospheric code [20].

With the aim to estimate the e�ective tempera-
ture, surface gravity and metallicity of stars observed
in the frame of the Project VeSElkA, we have gen-
erated a new library of high resolution (0.05Å in
the visible range from 3700Å to 7700Å) synthetic
spectra [30] using version �fteen of the PHOENIX
code [20]. A grid of stellar atmosphere models
and corresponding �uxes has been calculated for

2http://simbad.u-strasbg.fr/simbad/
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5000K6 Teff < 9000K with a step of 250K, for
9000K6 Teff 6 15000K with a step of 500K and
for 3.0 6 log g 6 4.5 with a step of 0.5. The grids
of models have been produced for the solar metallic-
ity [17] as well as for the metallicities [M/H] = −1.0,
−0.5, +0.5, +1.0, +1.5 assuming a nil microturbu-
lent velocity.

Nine Balmer line pro�les observed in the non-
normalized spectra of several CP stars selected
for Project VeSElkA were �tted using the code
FITSB2 [47] to determine the fundamental param-
eters of their stellar atmosphere. An example of the
best �t of Balmer lines in HD110380 obtained for
the solar metallicity is presented in Fig. 1. This
is a F2m star (see Table. 1) with Teff = 6980K,
log g = 4.19 [30], for which our best �t approximates
quite well also the Ca ii 3934Å and 3968Å line pro-
�les in the left side of the Balmer Hε line and in its
left wing respectively (see Fig. 1).

Fig. 1: The observed spectrum (thick line) of HD110380
is well �tted by synthetic spectrum (thin dotted line)
that corresponds to Teff = 6980± 200K, log g = 4.19±
0.2 (χ2/ν = 0.31) [30].

We have found that our grids provide almost the
same values of fundamental parameters of stellar at-
mospheres for the studied CP stars as do the Atlas9

grids calculated by Castelli & Kurucz [10]. However,
while studying the sensitivity of the determined val-
ues of Teff and log g to the set of Balmer lines used,
we have found that the use of the Atlas9 grids may
produce some ambiguity in the determination of fun-
damental stellar parameters if the e�ective tempera-
ture is close to 10000K depending on which set of
Balmer lines is used. Meanwhile, the Phoenix-15
grids are not sensitive to the choice of Balmer lines
in the range of e�ective temperatures from 9700K to
12000K [30].
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Fig. 2: Example of the best �t (line) obtained for
the combined Fe ii 4635Å line pro�le (open circles) in
HD95608 [28]. The vertical error-bars represent the
measurement precision of normalised �ux.

abundance analysis

From the analysis of observed line pro�les while
using the modi�ed ZEEMAN2 code [24, 25], we can
determine the radial velocity of the studied star, the
projection of its rotational velocity to the line of sight
V sin i and the abundance of the chemical element
responsible for this absorption line. Fig. 2 shows an
example of the Fe ii 4635Å line pro�le observed in
HD95608 that is well �tted by the theoretical pro-
�le [28]. Preliminary analysis has shown that iron
lines are not variable in the HD95608 spectra ob-
tained in a time span of few weeks. Therefore, in the
case of HD95608, we can use the line pro�le com-
posed from the data of several spectral observations
for our analysis (see Fig. 2).

For the abundance analysis, we usually select un-
blended (not contaminated by a contribution from
other chemical species) absorption line pro�les that
belong to a particular ion. In our study, we assume
that the core of the line pro�le is formed mainly at
line optical depth τ` = 1, which corresponds to a
particular layer of the stellar atmosphere. There-
fore, from the simulation of each line pro�le that
belongs to a particular ion, we can obtain its abun-
dance at a particular layer of the stellar atmosphere
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(that corresponds to a particular continuum optical
depth τ5000).

Taking into account that the analysed lines usu-
ally have di�erent lower energetic levels and oscilla-
tor strengths, their cores are generally formed at dif-
ferent optical depths τ5000. In this way, we can study
the vertical distribution of an element's abundance
from the analysis of a large number (at least ten or
more) line pro�les that belong to one or two ions of
this element that are detected in the analyzed spec-
trum [26]. A statistically signi�cant vertical strat-
i�cation of the element's abundance is considered
when the abundance change with optical depth ex-
ceeds 0.5 dex. More details on the �tting procedure
are given in [25]. This method was successfully used
by Khalack et al. [26, 27] to study the vertical abun-
dance strati�cation of chemical species in BHB stars
and by Thiam et al. [61] in HgMn stars.
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Fig. 3: The iron vertical strati�cation detected from the
analysis of individual lines observed in the spectra of
HD116235. The �lled triangles represent lines of neu-
tral iron while the open circles stand for singly ionized
iron [28]. The dashed line indicates the iron abundance
in the solar atmosphere [17].

results from Project VeSElkA

Using our grids of stellar atmosphere models and
synthetic spectra calculated with the PHOENIX-15
code [20] we have estimated the values of e�ec-
tive temperature, surface gravity and metallicity
for sixteen stars observed in the frame of VeSElkA
Project [30]. Our results on Teff and log g ob-
tained for twelve of these stars are consistent with
the previously published data. Meanwhile, for the
four other stars (HD23878, HD83373, HD95608 and
HD164584) we have for the �rst time reported the
estimates of their e�ective temperature, gravity and
metallicity in [30].

Estimations of average abundances and detection
of vertical abundance strati�cation of some chemical

species were carried out for several CP stars selected
for Project VeSElkA [28, 38]. Clear evidence of ver-
tical strati�cation of iron and chromium abundances
was found in the stellar atmospheres of HD95608
and HD116235 (see Fig. 3 for an example). For
the analysed chemical species, no evidence of ver-
tical strati�cation was found in the atmospheres of
HD71030 and HD186568 [28, 38]. The radial and ro-
tational velocities determined for the four stars under
consideration are consistent with the values found in
previous studies. According to LeBlanc et al. [38],
HD71030 does not show large abundance anomalies
and it might be a normal main sequence star.

Two normal B-type stars HD186568 and
HD209459 [15] have been selected for Project
VeSElkA as the reference stars (see Table 1). We
plan to use them to test the applied method for the
detection of vertical abundance strati�cation and to
verify our estimates of average abundance of chem-
ical species well represented by a large number of
spectral lines in the analysed spectra. As was men-
tioned above, we have not found signatures of ver-
tical abundance strati�cation from the analysis of
HD186568 spectra. The solar abundances of tita-
nium and iron were also obtained for HD209459,
which is known to have no abundance peculiari-
ties [22].
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Fig. 4: The increase of chromium abundance towards
the deeper atmospheric layers in HD22920. Each open
circle represents the data obtained from the analysis of
distinct line pro�le that belongs to Cr ii ion [29]. The
dashed line indicates the chromium abundance in the
solar atmosphere [17].

The average abundances of oxygen, silicon, iron
and chromium were obtained for di�erent rotational
phases of HD22920 that shows clear signatures of the
presence of a moderate magnetic �eld. All the ana-
lyzed elements show variability of their line pro�les
with the rotational phase. This argues in favour of
a non-uniform horizontal distribution of their abun-
dances. Among the studied elements, the Si ii line
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pro�les show the strongest variability with rotational
phase [29].

To study the vertical abundance strati�cation
of chemical species, the observed line pro�les were
�tted with the synthetic ones, simulated assuming
a homogeneous horizontal distribution of element
abundances and no magnetic �eld. This simpli�ca-
tion is not physically correct, but for a given rota-
tional phase it provides an estimate for the average
abundances of chemical species. Meanwhile, the con-
tribution of the magnetic �eld is accounted for by
the slightly larger value of V sin i obtained as the
�nal result of �tting. Among the chemical species
represented by a number of unblended spectral lines,
only silicon and chromium appear to show strong sig-
natures of vertical strati�cation of their abundance
in the stellar atmosphere of HD22920 [29]. Fig. 4
shows that chromium has a tendency to increase its
abundance towards the deeper atmospheric layers
in HD22920. Similar behaviour with atmospheric
depth was also found for the silicon abundance [29].

discussion

Accumulation or depletion of chemical elements
at certain optical depths brought about by atomic
di�usion [43] can modify the structure of stellar at-
mospheres of CP stars [36, 60] and lead to the ob-
served horizontal [32, 57] and vertical [52, 40] strati-
�cation of element abundances. For the Bp-Ap stars,
it is believed that the substantial magnetic �eld sup-
presses convection and contributes signi�cantly to
the mechanism of atomic di�usion [60]. In this way,
the magnetic �eld can stabilise the structure of abun-
dance peculiarities in atmospheres of magnetic CP
stars, so that they remain stable over more than
�fty years of spectral observations [41, 50]. There-
fore, for a comprehensive study of the structure of
stellar atmospheres in CP stars, it is important to
detect and observationally estimate the intensity of
vertical abundance strati�cation of di�erent chemi-
cal species [30, 38]. Such detections are the main
goal of Project VeSElkA. These results may lead
to improved calculations of the self-consistent stel-
lar atmosphere models with vertical strati�cation of
elements using the PHOENIX code [36], or other atmo-
spheric models such as those of Stift & Alecian [60].

For several program CP stars, we have esti-
mated their e�ective temperature, surface gravity
and metallicity through the �tting of nine Balmer
line pro�les with synthetic spectra calculated for a
grid of stellar atmosphere models. For this aim,
a new library of grids of stellar atmosphere mod-
els and corresponding �uxes has been generated and
tested [30]. The obtained stellar atmosphere param-
eters have been used to calculate homogeneous stel-
lar atmosphere models, which were employed to per-
form an abundance analysis of HD22920, HD23878,
HD95608, HD116235 and HD186568 [28, 29, 38]
with the help of the modi�ed ZEEMAN2 code [24,

25]. Among the studied CP stars, signatures
of vertical strati�cation of silicon and chromium
abundances were found in HD22920 [29], and of
iron and chromium abundances in HD95608 and
HD116235 [28, 38].
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Fig. 5: Example of overlapping of two spectra corrected
for radial velocity of the main component in the spectro-
scopic binary HD159082.

In order to improve the precision of measurement
of the abundance strati�cation with atmospheric
depths for di�erent chemical elements we need to
analyse more unblended spectral line pro�les that
belong to each element. Therefore, we plan to ex-
pand our study towards the near infrared spectral
region, where absorption lines of many metals can be
found for the cool upper main sequence stars (spec-
tral classes A0-F5). For this aim, we look forward
to analysing the spectra from the near IR spectropo-
larimetre/velocimetre SPIRou [4] proposed to be in-
stalled in 2017 at the CFHT. The Canada Foun-
dation for Innovation (CFI) has approved the pro-
duction of a copy of SPIRou that is planned to be
installed at a telescope with high aperture located
in the southern hemisphere. The spectropolarimetre
SPIRou will allow the acquisition of high resolution
(R > 70000) Stokes IVQU spectra throughout the
spectral range from 0.98 to 2.5µm (YJHK bands)
in a single exposure [11]. Such high spectral reso-
lution in the near IR will provide the measurement
of radial velocities with a precision higher than one
meter per second [11]. Taking into account the afore-
mentioned characteristics of SPIRou, we consider it
to be very useful to search for signatures of vertical
abundance strati�cation in stars. The high resolu-
tion near IR spectra of CP stars, even with the rela-
tively low signal-to-noise ratio, in combination with
their optical spectra could signi�cantly improve the
precision of the statistical evaluation of vertical strat-
i�cation of element abundances.

The abundance analysis of other CP stars selected
for Project VeSElkA is underway. The use of avail-
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able high-resolution and high signal-to-noise spectra
of CP stars obtained by other astronomers will be
analysed to accumulate an extensive database for
vertical strati�cation of element abundances in these
stars. The database will be used to search for a po-
tential dependence of the vertical abundance strat-
i�cation of di�erent chemical species relative to the
e�ective temperature similar to the one that we have
found for BHB stars [37].

We are also going to study the spectra of some
magnetic Bp-Ap stars with the aim of detecting
vertical strati�cation of element abundances and of
searching for possible correlation of the abundance
peculiarities with the magnetic �eld structure. Spe-
cial attention will be paid to the CP stars in binary
systems, as due to the tidal interaction its members
usually have a slow axial rotation [1, 59], which can
lead to a hydrodynamically stable atmosphere. Fig. 5
shows an example of two overlapping spectra cor-
rected for radial velocity of the main component in
the spectroscopic binary HD159082. From the �g-
ure one can see that the Fe i and Fe ii line pro�les
are relatively stable and can be used for the analysis
of vertical abundance strati�cation. Meanwhile, the
Cr i, Mo i, Ni i and He i line pro�les change signi�-
cantly during a period of time shorter than one day.
The spectra of the binary stars found in Table 1 have
been incorporated in the database of the BinaMIcS
project [3] that provides high quality spectra of mag-
netic CP stars in binary systems.
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