
Fast Vertical Mining of Sequential Patterns

Using Co-occurrence Information

Philippe Fournier-Viger1, Antonio Gomariz2,
Manuel Campos2, and Rincy Thomas3

1 Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Information and Communication Engineering, University of Murcia, Spain

3 Dept. of Computer Science, SCT, Bhopal, India
philippe.fournier-viger@umoncton.ca, {agomariz,manuelcampos}@um.es,

rinc thomas@rediffmail.com

Abstract. Sequential pattern mining algorithms using a vertical repre-
sentation are the most efficient for mining sequential patterns in dense
or long sequences, and have excellent overall performance. The vertical
representation allows generating patterns and calculating their supports
without performing costly database scans. However, a crucial performance
bottleneck of vertical algorithms is that they use a generate-candidate-
and-test approach that can generate a large amount of infrequent candi-
dates.To address this issue, we propose pruning candidates based on the
study of item co-occurrences. We present a new structure named CMAP
(Co-occurence MAP) for storing co-occurrence information. We explain
how CMAP can be used to prune candidates in three state-of-the-art ver-
tical algorithms, namely SPADE, SPAM and ClaSP. An extensive experi-
mental studywith six real-life datasets shows that (1) co-occurrence-based
pruning is effective, (2) CMAP is very compact and that (3) the result-
ing algorithms outperform state-of-the-art algorithms for mining sequen-
tial patterns (GSP, PrefixSpan, SPADE and SPAM) and closed sequential
patterns (ClaSP and CloSpan).

Keywords: sequential pattern mining, vertical database format, candi-
date pruning.

1 Introduction

Mining useful patterns in sequential data is a challenging task. Many studies have
been proposed for mining interesting patterns in sequence databases [9]. Sequen-
tial pattern mining is probably the most popular research topic among them.
A subsequence is called sequential pattern or frequent sequence if it frequently
appears in a sequence database, and its frequency is no less than a user-specified
minimum support threshold minsup [1]. Sequential pattern mining plays an im-
portant role in data mining and is essential to a wide range of applications such
as the analysis of web click-streams, program executions, medical data, biologi-
cal data and e-learning data [9]. Several efficient algorithms have been proposed

V.S. Tseng et al. (Eds.): PAKDD 2014, Part I, LNAI 8443, pp. 40–52, 2014.
c© Springer International Publishing Switzerland 2014

Fast Vertical Mining of Sequential Patterns 41

for sequential pattern mining such as ClaSP [7], CloSpan [12], GSP [11], PrefixS-
pan [10], SPADE [13] and SPAM [3]. Sequential pattern mining algorithms can
be categorized as using a horizontal database format (e.g. CloSpan, GSP and
PrefixSpan) or a vertical database format (e.g. ClaSP, SPADE, SPAM). Using
the vertical format provides the advantage of generating patterns and calculat-
ing their supports without performing costly database scans [3,7,13]. This allows
vertical algorithms to perform better on datasets having dense or long sequences
than algorithms using the horizontal format, and to have excellent overall perfor-
mance [2,3,7]. However, a crucial performance bottleneck of vertical algorithms
is that they use a generate-candidate-and-test approach, which can generate a
large amount of patterns that do not appear in the input database or are in-
frequent. An important research questions that arises is: Could we design an
effective candidate pruning method for vertical mining algorithms to improve
mining performance? Answering this question is challenging. It requires design-
ing a candidate pruning mechanism (1) that is effective at pruning candidates
and (2) that has a small runtime and memory cost. Moreover, the mechanism
should preferably be generic. i.e. applicable to any vertical mining algorithms.

In this paper, we present a solution to this issue based on the study of item
co-occurrences. Our contribution is threefold. First, to store item co-occurrence
information, we introduce a new data structure named Co-occurrence MAP
(CMAP). CMAP is a small and compact structure, which can be built with
a single database scan.

Second, we propose a generic candidate pruning mechanism for vertical se-
quential pattern mining algorithms based on the CMAP data structure. We
describe how the pruning mechanism is integrated in three state-of-the-art algo-
rithms ClaSP, SPADE and SPAM. We name the resulting algorithms CM-ClaSP,
CM-SPADE and CM-SPAM.

Third, we perform a wide experimental evaluation on six real-life datasets. We
compare the performance of CM-ClaSP, CM-SPADE and CM-SPAM with state-
of-the-art algorithms for mining sequential patterns (GSP, PrefixSpan, SPADE
and SPAM) and closed sequential patterns (ClaSP and CloSpan). Results show
that the modified algorithms (1) prune a large amount of candidates, (2) and
are up to eight times faster than the corresponding original algorithms and (3)
that CM-ClaSP and CM-SPADE have respectively the best performance for
sequential pattern mining and closed sequential pattern mining.

The rest of the paper is organized as follows. Section 2 defines the problem of
sequential pattern mining and reviews the main characteristics of ClaSP, SPADE
and SPAM. Section 3 describes the CMAP structure, the pruning mechanism,
and how it is integrated in ClaSP, SPADE and SPAM. Section 4 presents the
experimental study. Finally, Section 5 presents the conclusion.

2 Problem Definition and Related Work

Definition 1 (sequence database). Let I = {i1, i2, ..., il} be a set of items
(symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is an unordered set of distinct

42 P. Fournier-Viger et al.

items. The lexicographical order �lex is defined as any total order on I. Without
loss of generality, it is assumed in the following that all itemsets are ordered
according to �lex. A sequence is an ordered list of itemsets s = 〈I1, I2, ..., In 〉
such that Ik ⊆ I (1 ≤ k ≤ n). A sequence database SDB is a list of sequences
SDB = 〈s1, s2, ..., sp〉 having sequence identifiers (SIDs) 1, 2...p. Example. A
sequence database is shown in Fig. 1 (left). It contains four sequences having
the SIDs 1, 2, 3 and 4. Each single letter represents an item. Items between
curly brackets represent an itemset. The first sequence 〈{a, b}, {c}, {f, g}, {g},
{e}〉 contains five itemsets. It indicates that items a and b occurred at the same
time, were followed by c, then f, g and lastly e.

SID Sequences ID Pattern Support
1
2
3
4

{a, b},{c},{f, g},{g},{e}
{a, d},{c},{b},{a, b, e, f}
{a},{b},{f},{e}
{b},{f, g}

 p1
p2
p3
p4
p5
p6…

{a},{f}
{a},{c}{f}
{b},{f,g}
{g},{e}
{c},{f}
{b}

3
2
2
2
2
4

Fig. 1. A sequence database (left) and some sequential patterns found (right)

Definition 2 (sequence containment). A sequence sa = 〈A1, A2, ..., An〉 is
said to be contained in a sequence sb = 〈B1, B2, ..., Bm〉 iff there exist integers
1 ≤ i1 < i2 < ... < in ≤ m such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin (denoted
as sa � sb). Example. Sequence 4 in Fig. 1 (left) is contained in Sequence 1.

Definition 3 (prefix). A sequence sa = 〈A1, A2, ..., An〉 is a prefix of a se-
quence sb = 〈B1, B2, ..., Bm〉, ∀n < m, iff A1 = B1, A2 = B2, ..., An−1 = Bn−1

and the first |An| items of Bn according to �lex are equal to An.

Definition 4 (support). The support of a sequence sa in a sequence database
SDB is defined as the number of sequences s ∈ SDB such that sa � s and is
denoted by supSDB(sa).

Definition 5 (sequential pattern mining). Let minsup be a threshold set
by the user and SDB be a sequence database. A sequence s is a sequential
pattern and is deemed frequent iff supSDB(s) ≥ minsup. The problem of mining
sequential patterns is to discover all sequential patterns [11]. Example. Fig. 1
(right) shows 6 of the 29 sequential patterns found in the database of Fig. 1
(left) for minsup = 2.

Definition 6 (closed sequential pattern mining). A sequential pattern sa
is said to be closed if there is no other sequential pattern sb, such that sb is a
superpattern of sa, sa � sb, and their supports are equal. The problem of closed
sequential patterns is to discover the set of closed sequential patterns, which is
a compact summarization of all sequential patterns [7,12].

Fast Vertical Mining of Sequential Patterns 43

Definition 7 (horizontal database format). A sequence database in hori-
zontal format is a database where each entry is a sequence. Example. Fig. 1
(left) shows an horizontal sequence database.

Definition 8 (vertical database format). A sequence database in vertical
format is a database where each entry represents an item and indicates the list
of sequences where the item appears and the position(s) where it appears [13].
Example. Fig. 2 shows the vertical representation of the database of Fig. 1
(left).

From the vertical representation, a structure named IdList [13] can be as-
sociated with each pattern. IdLists allow calculating the support of a pattern
quickly by making join operations with IdLists of smaller patterns. To discover
sequential patterns using IdLists, a single database scan is required to create
IdLists of patterns containing a single items, since IdList of larger patterns are
obtained by performing the aforementioned join operation (see [13] for details).
Several works proposed alternative representations for IdLists to save time in
join operations, being the bitset representation the most efficient one [3,2].

Fig. 2. The vertical representation of the example database shown in Figure 1(left)

The horizontal format is used by Apriori-based algorithms (e.g. GSP) and
pattern-growth algorithms (e.g. CloSpan and PrefixSpan). The two main algo-
rithms using the vertical database format are SPADE and SPAM. Other algo-
rithms are variations such as bitSPADE [2] and ClaSP [7]. SPADE and SPAM
differ mainly by their candidate generation process, which we review thereafter.

Candidate Generation in SPAM. The pseudocode of SPAM is shown in
Fig. 3. SPAM take as input a sequence database SDB and the minsup thresh-
old. SPAM first scans the input database SDB once to construct the vertical
representation of the database V (SDB) and the set of frequent items F1. For
each frequent item s ∈ F1, SPAM calls the SEARCH procedure with 〈s〉, F1,
{e ∈ F1|e �lex s}, and minsup. The SEARCH procedure outputs the pattern
〈{s}〉 and recursively explore candidate patterns starting with the prefix 〈{s}〉.
The SEARCH procedure takes as parameters a sequential pattern pat and two

44 P. Fournier-Viger et al.

sets of items to be appended to pat to generate candidates. The first set Sn repre-
sents items to be appended to pat by s-extension. The s-extension of a sequential
pattern 〈I1, I2, ...Ih〉 with an item x is defined as 〈I1, I2, ...Ih, {x}〉. The second
set Si represents items to be appended to pat by i-extension. The i-extension of
a sequential pattern 〈I1, I2, ...Ih〉 with an item x is defined as 〈I1, I2, ...Ih∪{x}〉.
For each candidate pat generated by an extension, SPAM calculate its support
to determine if it is frequent. This is done by making a join operation (see [3] for
details) and counting the number of sequences where the pattern appears. The
IdList representation used by SPAM is based on bitmaps to get faster operations
[3]. If the pattern pat is frequent, it is then used in a recursive call to SEARCH
to generate patterns starting with the prefix pat. Note that in the recursive call,
only items that resulted in a frequent pattern by extension of pat are considered
for extending pat. SPAM prunes the search space by not extending infrequent
patterns. This can be done due to the property that an infrequent sequential
pattern cannot be extended to form a frequent pattern [1].

SPAM(SDB, minsup)
1. Scan SDB to create V(SDB) and identify F1, the list of frequent items.
2. FOR each item s F1,
3. SEARCH(s , F1, {e F1 | e lex s}, minsup).

SEARCH(pat, Sn, In, minsup)
1. Output pattern pat.
2. Stemp := Itemp :=
3. FOR each item j Sn,
4. IF the s-extension of pat is frequent THEN Stemp := Stemp {i}.
5. FOR each item j Stemp,
6. SEARCH(the s-extension of pat with j, Stemp , {e Stemp | e lex j}, minsup).
7. FOR each item j In,
8. IF the i-extension of pat is frequent THEN Itemp := Itemp {i}.
9. FOR each item j Itemp,
10. SEARCH(i-extension of pat with j, Stemp , {e Itemp | e lex j}, minsup).

Fig. 3. The pseudocode of SPAM

Candidate Generation in SPADE. The pseudocode of SPADE is shown in
Fig. 4. The SPADE procedure takes as input a sequence database SDB and the
minsup threshold. SPADE first constructs the vertical database V (SDB) and
identifies the set of frequent sequential patterns F1 containing frequent items.
Then, SPADE calls the ENUMERATE procedure with the equivalence class
of size 0. An equivalence class of size k is defined as the set of all frequent
patterns containing k items sharing the same prefix of k − 1 items. There is
only an equivalence class of size 0 and it is composed of F1. The ENUMERATE
procedure receives an equivalence class F as parameter. Each member Ai of
the equivalence class is output as a frequent sequential pattern. Then, a set Ti,
representing the equivalence class of all frequent extensions of Ai is initialized to
the empty set. Then, for each pattern Aj ∈ F such that i �lex j, the pattern Ai

is merged with Aj to form larger pattern(s). For each such pattern r, the support

Fast Vertical Mining of Sequential Patterns 45

of r is calculated by performing a join operation between IdLists of Ai and Aj .
If the cardinality of the resulting IdList is no less than minsup, it means that r
is a frequent sequential pattern. It is thus added to Ti. Finally, after all pattern
Aj have been compared with Ai, the set Ti contains the whole equivalence class
of patterns starting with the prefix Ai. The procedure ENUMERATE is then
called with Ti to discover larger sequential patterns having Ai as prefix. When
all loops terminate, all frequent sequential patterns have been output (see [13]
for the proof that this procedure is correct and complete).

SPADE and SPAMare very efficient for datasets having dense or long sequences
and have excellent overall performance since performing join operations to cal-
culate the support of candidates does not require scanning the original database
unlike algorithms using the horizontal format. For example, the well-known Pre-
fixSpan algorithm, which uses the horizontal format, performs a database projec-
tion for each item of each frequent sequential pattern, in the worst case, which is
extremely costly. The main performance bottleneck of vertical mining algorithms
is that they use a generate-candidate-and-test approach and therefore spend lot
of time evaluating patterns that do not appear in the input database or are in-
frequent. In the next section, we present a novel method based on the study of
item co-occurrence information to prune candidates generated by vertical mining
algorithms to increase their performance.

SPADE(SDB, minsup)
1. Scan SDB to create V(SDB) and identify F1 the list of frequent items.
2. ENUMERATE(F1).

ENUMERATE(an equivalence class F)
1. FOR each pattern Ai F
2. Output Ai.

3. Ti := .
4. FOR each pattern Aj F, with j i
5. R = MergePatterns(Ai , Aj)
6. FOR each pattern r R
7. IF sup(R) minsup THEN
8. Ti := Ti {R};
9. ENUMERATE(Ti)

Fig. 4. The pseudocode of SPADE

3 Co-occurrence Pruning

In this section, we introduce our approach, consisting of a data structure for
storing co-occurrence information, and its properties for candidate pruning for
vertical sequential pattern mining. Then, we describe how the data structure is
integrated in three state-of-the-art vertical mining algorithms, namely ClaSP,
SPADE and SPAM.

46 P. Fournier-Viger et al.

3.1 The Co-occurrence Map

Definition 9. An item k is said to succeed by i-extension to an item j in a
sequence 〈I1, I2, ..., In〉 iff j, k ∈ Ix for an integer x such that 1 ≤ x ≤ n and
k �lex j.

Definition 10. An item k is said to succeed by s-extension to an item j in a
sequence 〈I1, I2, ..., In〉 iff j ∈ Iv and k ∈ Iw for some integers v and w such that
1 ≤ v < w ≤ n.

Definition 11. A Co-occurrence MAP (CMAP) is a structure mapping each
item k ∈ I to a set of items succeeding it. We define two CMAPs named CMAPi

and CMAPs. CMAPi maps each item k to the set cmi(k) of all items j ∈ I
succeeding k by i-extension in no less than minsup sequences of SDB. CMAPs

maps each item k to the set cms(k) of all items j ∈ I succeedings k by s-
extension in no less than minsup sequences of SDB. Example. The CMAP
structures built for the sequence database of Fig. 1(left) are shown in Table 1,
being CMAPi on the left part and CMAPs on the right part. Both tables have
been created considering aminsup of two sequences. For instance, for the item f ,
we can see that it is associated with an item, cmi(f) = {g}, in CMAPi, whereas
it is associated with two items, cms(f) = {e, g}, in CMAPs. This indicates that
both items e and g succeed to f by s-extension and only item g does the same
for i-extension, being all of them in no less than minsup sequences.

Table 1. CMAPi and CMAPs for the database of Fig. 1 and minsup = 2

CMAPi

item is succeeded by (i-extension)

a {b}
b ∅
c ∅
e ∅
f {g}
g ∅

CMAPs

item is succeeded by (s-extension)

a {b, c, e, f}
b {e, f, g}
c {e, f}
e ∅
f {e, g}
g ∅

Size Optimization. Let n = |I| be the number of items in SDB. To implement
a CMAP, a simple solution is to use an n×n matrix (two-dimensional array) M
where each row (column) correspond to a distinct item and such that each entry
mj,k ∈ M represents the number of sequences where the item k succeed to the
item i by i-extension or s-extension. The size of a CMAP would then be O(n2).
However, the size of CMAP can be reduced using the following strategy. It can be
observed that each item is succeeded by only a small subset of all items for most
datasets. Thus, few items succeed another one by extension, and thus, a CMAP
may potentially waste large amount of memory for empty entries if we consider
them by means of a n × n matrix. For this reason, in our implementations we
instead implemented each CMAP as a hash table of hash sets, where an hashset
corresponding to an item k only contains the items that succeed to k in at least
minsup sequences.

Fast Vertical Mining of Sequential Patterns 47

3.2 Co-occurrence-Based Pruning

The CMAP structure can be used for pruning candidates generated by vertical
sequential pattern mining algorithms based on the following properties.

Property 1 (pruning an i-extension). Let be a frequent sequential pattern
A and an item k. If there exists an item j in the last itemset of A such that
k belongs to cmi(j), then the i-extension of A with k is infrequent. Proof. If
an item k does not appear in cmi(j), then k succeed to j by i-extension in less
than minsup sequences in the database SDB. It is thus clear that appending k
by i-extension to a pattern A containing j in its last itemset will not result in a
frequent pattern. �
Property 2 (pruning an s-extension). Let be a frequent sequential patternA
and an item k. If there exists an item j ∈ A such that the item k belongs to cms(j),
then the s-extension ofA with k is infrequent.Proof. If an item k does not appear
in cms(j), then k succeeds to j by s-extension in less thanminsup sequences from
the sequence database SDB. It is thus clear that appending j by s-extension to a
pattern A containing k will not result in a frequent pattern. �
Property 3 (pruning a prefix). The previous properties can be generalized
to prune all patterns starting with a given prefix. Let be a frequent sequential
pattern A and an item k. If there exists an item j ∈ A (equivalently j in the last
itemset of A) such that there is an item k ∈ cms(j) (equivalently in cmi(j)), then
all supersequences B having A as prefix and where k succeeds j by s-extension
(equivalently i-extension to the last itemset) in A in B are infrequent. Proof. If
an item k does not appear in cms(j) (equivalently cmi(j)), therefore k succeeds
to j in less than minsup sequences by s-extension (equivalently i-extension to
the last itemset) in the database SDB. It is thus clear that no frequent pattern
containing j (equivalently j in the last itemset) can be formed such that k is
appended by s-extension (equivalently by i-extension to the last itemset). �

3.3 Integrating Co-occurrence Pruning in Vertical Mining

Integration in SPADE. The integration in SPADE is done as follows. In the
ENUMERATE procedure, consider a pattern r obtained by merging two patterns
Ai = P ∪ x and Aj = P ∪ y, being P a common prefix for Ai and Aj . Let y be
the item that is appended to Ai to generate r. If r is an i-extension, we use the
CMAPi structure, otherwise, if r is an s-extension, we use CMAPs. If the last
item a of r does not have an item x ∈ cmi(a) (equivalently in cms(a)), then the
pattern r is infrequent and r can be immediately discarded, avoiding the join
operation to calculate the support of r. This pruning strategy is correct based
on Properties 1, 2 and 3.

Note that to perform the pruning in SPADE, we do not have to check if items
of the prefix P are succeeded by the item y ∈ Aj . This is because the items of
P are also in Aj . Therefore, checking the extension of P by y was already done,
and it is not necessary to do it again.

48 P. Fournier-Viger et al.

Integration in SPAM. The CMAP structures are used in the SEARCH pro-
cedure as follows. Let a sequential pattern pat being considered for s-extension
(x ∈ Sn) or i-extension (x ∈ Si) with an item x (line 3). If the last item a in pat
does not have an item x ∈ cms(a) (equivalently cmi), then the pattern resulting
from the extension of pat with x will be infrequent and thus the join operation
of x with pat to count the support of the resulting pattern does not need to
be performed (by Property 1 and 2). Furthermore, the item x should not be
considered for generating any pattern by s-extension (i-extension) having pat as
prefix (by Property 3). Therefore x should not be added to the variable Stemp

(Itemp) that is passed to the recursive call to the SEARCH procedure.
Note that to perform the pruning in SPAM, we do not have to check for

extensions of pat with x for all the items since such items, except for the last
one, have already been checked for extension in previous steps.

Integration in ClaSP. We have also integrated co-occurrence pruning in
ClaSP [7], a state of the art algorithm for closed sequential pattern mining. The
integration in ClaSP is not described here since it is done as in SPAM since
ClaSP is based on SPAM.

4 Experimental Evaluation

We performed experiments to assess the performance of the proposed algorithms.
Experiments were performed on a computer with a third generation Core i5 pro-
cessor running Windows 7 and 5 GB of free RAM. We compared the performance
of the modified algorithms (CM-ClaSP, CM-SPADE, CM-SPAM) with state-of-
the-art algorithms for sequential pattern mining (GSP, PrefixSpan, SPADE and
SPAM) and closed sequential pattern mining (ClaSP and CloSpan). All algo-
rithms were implemented in Java. Note that for SPADE algorithms, we use the
version proposed in [2] that implement IdLists by means of bitmaps. All mem-
ory measurements were done using the Java API. Experiments were carried on
six real-life datasets having varied characteristics and representing four differ-
ent types of data (web click stream, text from books, sign language utterances
and protein sequences). Those datasets are Leviathan, Sign, Snake, FIFA, BMS
and Kosarak10k. Table 2 summarizes their characteristics. The source code of
all algorithms and datasets used in our experiments can be downloaded from
http://goo.gl/hDtdt.

The experiments consisted of running all the algorithms on each dataset while
decreasing the minsup threshold until algorithms became too long to execute,
ran out of memory or a clear winner was observed. For each dataset, we recorded
the execution time, the percentage of candidate pruned by the proposed algo-
rithms and the total size of CMAPs. The comparison of execution times is shown
in Fig. 5. The percentage of candidates pruned by the proposed algorithms is
shown in Table 3.

Effectiveness of Candidate Pruning. CM-ClaSP, CM-SPADE and CM-
SPAM are generally from about 2 to 8 times faster than the corresponding
original algorithms (ClaSP, SPADE and SPAM). This shows that co-occurrence

http://goo.gl/hDtdt

Fast Vertical Mining of Sequential Patterns 49

Table 2. Dataset characteristics

dataset sequence count distinct item avg. seq. length type of data
count (items)

Leviathan 5834 9025 33.81 (std= 18.6) book
Sign 730 267 51.99 (std = 12.3) language utterances
Snake 163 20 60 (std = 0.59) protein sequences
FIFA 20450 2990 34.74 (std = 24.08) web click stream
BMS 59601 497 2.51 (std = 4.85) web click stream
Kosarak10k 10000 10094 8.14 (std = 22) web click stream

20

40

60

80

100

120

140

41 43 45 47 49 51 53 55

Ru
nt

im
e

(s
)

minsup

SIGN

10

20

30

40

50

60

70

80

50 60 70 80 90 100 110 120

Ru
nt

im
e

(s
)

minsup

Leviathan

5
10
15
20
25
30
35
40
45

15 16 17 18 19 20 21 22 23 24 25 26 27 28

Ru
nt

im
e

(s
)

minsup

Kosarak

20

40

60

80

100

120

140

2500 2700 2900 3100

Ru
nt

im
e

(s
)

minsup

FIFA

10

20

30

40

50

60

38 40 42 44 46 48

Ru
nt

im
e

(s
)

minsup

BMS

Snake SPADE SPAM PrefixSpan GSP ClaSP
CloSpan CM-SPAM CM-SPADE CM-ClaSP

20

40

60

80

100

120

140

105 115 125

Ru
nt

im
e

(s
)

minsup

Snake

Fig. 5. Execution times

50 P. Fournier-Viger et al.

Table 3. Candidate reduction

BMS Kosarak Leviathan Snake Sign Fifa

CM-SPAM 78 to 93 % 94 to 98 % 50 to 51 % 28% 63 % 61 to 68 %
CM-SPADE 75 to 76 % 98 % 50 % 25 to 26 % 69 % 63 to 69 %
CM-ClaSP 79 to 93% 75 % 50 to 52 % 18 % 63 % 67 to 68 %

Table 4. CMAP implementations comparison

BMS Kosarak Leviathan Snake Sign Fifa

minsup 38 16 60 105 43 2500
CMAP Size (hashmap) 0.5 MB 33.1 MB 15 MB 64 KB 3.19 MB 0.4 MB
CMAP Size (matrix) 0.9 MB 388 MB 310 MB 1.7 KB 0.2 MB 34.1 MB
Pair count (hashmap) 50,885 58,772 41,677 144 17,887 2,500
Pair count (matrix) 247,009 101,888,836 81,450,625 400 71,289 8,940,100

pruning is an effective technique to improve the performance of vertical mining
algorithms. The dataset where the performance of the modified algorithms is
closer to the original algorithms is Snake because all items co-occurs with each
item in almost all sequences and therefore fewer candidates could be pruned.
For other datasets, the percentage of candidates pruned range from 50% and to
98 %). The percentage slowly decrease as minsup get lower because less pairs
in CMAP had a count lower than minsup for pruning.

Best Performance. For mining sequential patterns, CM-SPADE had the best
performance on all but two datasets (Kosarak and BMS). The second best algo-
rithm for mining sequential patterns is CM-SPAM (best performance on BMS
and Kosarak). For mining closed sequential patterns, CM-ClaSP has the best
performance on four datasets (Kosarak, BMS, Snake and Leviathan). CM-ClaSP
is only outperformed by CloSpan on two datasets (FIFA and SIGN) and for low
minsup values.

Memory Overhead. We also studied the memory overhead of using CMAPs.
We measured the total memory used by a matrix implementation and a hashmap
implementation of CMAPs (cf. section 3.1) for all datasets for the lowestminsup
values from the previous experiments. Results are shown in Table 4. Size is
measured in terms of memory usage and number of entries in CMAPs. From
these results, we conclude that (1) the matrix implementation is smaller for
datasets with a small number of distinct items (Snake and SIGN), while (2) the
hashmap implementation is smaller for datasets with a large number of items
(BMS, Leviathan, Kosarak and FIFA) and (3) the hashmap implementation has
a very low memory overhead (less than 35 MB on all datasets).

5 Conclusion

Sequential pattern mining algorithms using the vertical format are very efficient
because they can calculate the support of candidate patterns by avoiding costly

Fast Vertical Mining of Sequential Patterns 51

database scans. However, the main performance bottleneck of vertical mining
algorithms is that they usually spend lot of time evaluating candidates that do
not appear in the input database or are infrequent. To address this problem,
we presented a novel data structure named CMAP for storing co-occurrence
information. We have explained how CMAPs can be used for pruning candi-
dates generated by vertical mining algorithms. We have shown how to integrate
CMAPs in three state-of-the-art vertical algorithms. We have performed an ex-
tensive experimental study on six real-life datasets to compare the performance
of the modified algorithms (CM-ClaSP, CM-SPADE and CM-SAPM) with state-
of-the-art algorithms (ClaSP, CloSpan, GSP, PrefixSpan, SPADE and SPAM).
Results show that the modified algorithms (1) prune a large amount of candi-
dates, (2) are up to 8 times faster than the corresponding original algorithms
and (3) that CM-SPADE and CM-ClaSP have respectively the best performance
for mining sequential patterns and closed sequential patterns.

The source code of all algorithms and datasets used in our experiments can
be downloaded from http://goo.gl/hDtdt.

For future work, we plan to develop additional optimizations and also to
integrate them in sequential rule mining [5], top-k sequential pattern mining [4]
and maximal sequential pattern mining [6].

Acknowledgement. This work is partially financed by a National Science and
Engineering Research Council (NSERC) of Canada research grant, a PhD grant
from the Seneca Foundation (Regional Agency for Science and Technology of
the Region de Murcia), and by the Spanish Office for Science and Innovation
through project TIN2009-14372-C03-01 and PlanE, and the European Union by
means of the European Regional Development Fund (ERDF, FEDER).

References

1. Agrawal, R., Ramakrishnan, S.: Mining sequential patterns. In: Proc. 11th Intern.
Conf. Data Engineering, pp. 3–14. IEEE (1995)

2. Aseervatham, S., Osmani, A., Viennet, E.: bitSPADE: A Lattice-based Sequential
Pattern Mining Algorithm Using Bitmap Representation. In: Proc. 6th Intern.
Conf. Data Mining, pp. 792–797. IEEE (2006)

3. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a
bitmap representation. In: Proc. 8th ACM SIGKDD Intern. Conf. Knowledge Dis-
covery and Data Mining, pp. 429–435. ACM (2002)

4. Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R.: TKS:
Efficient Mining of Top-K Sequential Patterns. In: Motoda, H., Wu, Z., Cao, L.,
Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013, Part I. LNCS, vol. 8346, pp.
109–120. Springer, Heidelberg (2013)

5. Fournier-Viger, P., Nkambou, R., Tseng, V.S.: RuleGrowth: Mining Sequential
Rules Common to Several Sequences by Pattern-Growth. In: Proc. ACM 26th
Symposium on Applied Computing, pp. 954–959 (2011)

6. Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Mining Maximal Sequential Patterns
without Candidate Maintenance. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao,
M., Wang, W. (eds.) ADMA 2013, Part I. LNCS, vol. 8346, pp. 169–180. Springer,
Heidelberg (2013)

http://goo.gl/hDtdt

52 P. Fournier-Viger et al.

7. Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: An Efficient Algorithm
for Mining Frequent Closed Sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda,
H., Xu, G. (eds.) PAKDD 2013, Part I. LNCS, vol. 7818, pp. 50–61. Springer,
Heidelberg (2013)

8. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan
Kaufmann, San Francisco (2006)

9. Mabroukeh, N.R., Ezeife, C.I.: A taxonomy of sequential pattern mining algo-
rithms. ACM Computing Surveys 43(1), 1–41 (2010)

10. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE
Trans. Knowledge Data Engineering 16(11), 1424–1440 (2004)

11. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

12. Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large
datasets. In: Proc. 3rd SIAM Intern. Conf. on Data Mining, pp. 166–177 (2003)

13. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1), 31–60 (2001)

	Fast Vertical Mining of Sequential Patterns Using Co-occurrence Information
	Introduction
	Problem Definition and Related Work
	Co-occurrence Pruning
	The Co-occurrence Map
	Co-occurrence-Based Pruning
	Integrating Co-occurrence Pruning in Vertical Mining

	Experimental Evaluation
	Conclusion

