Tutoriel pour faire les analyses statistiques de la 3^e étude sur JASP

Pierre Cormier École de psychologie Université de Moncton © 2018

Remarques

 Je suppose que vous savez télécharger et faire démarrer JASP. Si ce n'est pas le cas, veuillez consulter le document « JASP pas à pas».

Les explications des statistiques se trouvent dans les notes de cours et dans le document « SPSS 3^e rapport 2018 ».

1^{ère} étape: ouvrir le fichier de données avec JASP

Note: JASP lit les fichiers de SPSS

🕖 fichier2018J

e

Ū

[]]

P

0 🗹

Taper ici pour rechercher

RR

S

C

A Fre

Décrire l'échantillon: a) cliquer sur descriptives en haut à gauche et choisir « descriptive analysis», b) s'assurer de cocher « Frequency tables », c) puis choisir les variables désirées (voir Guide SPSS 3^e rapport 2018)

 \times

Ε

 \land

^		ОК	
	•	📏 age	
		🧓 genre	
		Split	
~	•	🔒 📊	

ominal and ordinal variables)

	age	genre
Valid	56	56
Missing	0	0
Mean	20.464	
Std. Deviation	2.296	
Minimum	18.000	
Maximum	31.000	

Note. Not all values are available for Nominal Text variables

Frequencies

Frequencies for genre

genre	Frequency	Percent	Valid Perce	
F	49	87.500	87.500	
Μ	7	12.500	12.500	
Missing	0	0.000		

Evaluer la cohérence interne des mesures a) cliquer sur descriptives en haut à gauche et choisir « reliability analysis », b) cocher « Cronbach's alpha » à gauche et à droite, c) si désiré, cocher aussi « Mean », « standard deviation » et « item-rest correlation » d) choisir les variables désirées dans l'analyse (voir Guide)

Refaire les mêmes sélections (voir diapositive 7) avec les variables de chacune des 14 autres échelles

Régression multiple (1)

a) cliquer sur regression et choisir « linear regression », b) placer « NNot2653 » comme variable dépendante, c) cliquer sur statistics et choisir « estimates », « model fit », « R squared change » et « descriptives » d) cliquer sur « option » pour s'assurer que la probabilité p est à 0,05 pour l'inclusion et à 0,10 pour l'exclusion e) cliquer sur assumption checks et choisir « residuals vs predicted »

fichier2018J*						
File Common	+					
Descriptives	ANOVA Re	egression	Frequencies	Factor		
Reg Lasion Coefficients			ОК			
✓ Estimates	✓ Model fit					
Confidence intervals	✓ R squared change					
Interval 95	Descriptive			l inear R	Regression	
	Part and partial correlati	ions				
Covariance matrix	Collinearity diagnostics					
Residuals				Model Summ	nary	
Durbin-Watson				Model	R	R²
Casewise diagnostics				1		
Outliers outside 3	standard deviations			· · ·	•	
 All cases 						
• Ontions				ANOVA		
■ Options				Model		Sum of Sq
 Assumption Checks 					Democian	
P_sidual Plots				1	Regression	
Residuals vs. dependent					Total	
Residuals vs. covariates						
Kesiduals vs. predicted			~	•		

Régression multiple (2)

- procédons par étapes là où SPSS fait ce travail en un seul coup, 1^{ère} étape
- b) placer les 15 variables entre « Motiv_intrinseq» et « Anx_test » comme « covariate » et assurez-vous d'avoir la méthode à « Stepwise »

Régression multiple (3)

2^e étape

c) cliquer sur OK pour conserver l'analyse précédente

d) recommencer l'analyse de régression: choisir Nnot2653 et s'assurer que tous les choix de la diapositive 10 sont encore activés (sinon les refaire)

e) s'assurer que le choix de méthode est à « Enter »

f) insérer comme covariables le TONI et les variables significatives de l'analyse précédente (voir oval vert)

g) sauf qu'il ne faut pas prendre Anx_tests parce que le TONI comme contrôle va la rendre non significative

Statistiques à retenir pour le rapport

les statistiques à placer dans votre rapport sont celles encerclées en bleu (pour les statistiques du modèle de régression global) et en vert (pour les statistiques des coefficients de régression de chaque covariable)

Limites de JASP par rapport à SPSS

1) JASP ne produit pas de statistiques d'étape comme SPSS, vous ne pourrez donc pas les rapporter comme l'exige l'APA (à moins de demander l'aide d'une autre équipe travaillant sur SPSS)

2) vous aurez seulement la figure des valeurs résiduelles en fonction des valeurs prédites

3) pour produire la figure de la régression, nous devons faire une autre opération dans JASP, cette opération est possible parce que j'ai sauvegardé dans le fichier SPSS les valeurs prédites de chaque régression

Graphique de la régression multiple

a) cliquer sur OK pour conserver l'analyse précédente si vous ne l'avez pas déjà fait b) retourner dans regression et choisir « correlation matrix » c) cliquer sur « correlation matrix » dans plots d) placer les variables NNot2653 et **ZPr 2653**

Répéter les sélections et les procédures des diapositives 10 à 19 pour la régression de la variable dépendante **Satisfaction** académique