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Warning:

Neither the organization’s named in this Report, nor any person acting on behalf of any of them
assume any liability for the misuse or misunderstanding of the information presented in this study.
The user is expected to make the final evaluation of the appropriateness of the technique and the
accuracy of the data and calculations in his or her own set of circumstances.

Avertissement:

Les organisations énumérées dans ce rapport ou toute personne agissant en leurs noms déclinent
toute responsabilité pour le mauvais emploi ou la mauvaise interprétation des renseignements
contenus dans cette étude. Il incombe aux utilisateurs d’évaluer la pertinence des techniques et
I’exactitude des données et calculs dans les circonstances qui s’appliquent.



TABLE OF CONTENTS

TABLE OF CONTENTS ... iiirrrrccesess s s s s s s s s smmsssss s s s e s e s s n s s s s s e e e e s mmmans s s s e e e e s nnnasnssnnns 2
LISTE OF TABLES ..ottt sss s s s s s s s s smsssssss s s s s s e s s mmmssss s ss s s s e s e e s nmmnsssssasseensnnnnnnssssnsnnnnnns 3
LISTE OF FIGURES ... s s s s s s s s s sss s s s e s s s s mmmasssss s s s e e e s mmma s nns s e e e e nnnmnnssssnsnsnnnns 3
LISTE OF ACRONYMS AND SYMBOLS.......ccoociiiiiriirrrremmessssss s e sssssssssssssss s s e s s s ssmssssssssssnnnes 4
ABSTRACT / RESUME ......c.ooiitiecisctces e s s ssssse s ssesassss s sssssessssessessssssssssessssssnsssssssnsanens 5
1. INTRODUCGCTION ...t cirrrirceessss s e e s e s s e ssss s s s e s e e s smm s sa s s e e r e s rnmnnssssssssennennnnnnssnsnsnnnnnns 6
2. MATERIALS AND METHODS.......cooiiceecciiirirrrrrssessssss s s s e s s e s smmassssss s s s e r e e s smnnsssssssssnnesnnnnnns 7
2.1 STUAY @rEa cceuuiiiieeeeiiiiiienniiiiiieensiiiiienmssissisenmssssstessssssstessssssssssssssssssssnssssssssnsssssssasssssssssssssssssssnnssssssssnsssssssans 7
2.2 Water temperature MOdeliNg ....ccccuueiiiiiiiniiiiiiiniiiiiiieiieiienneiiiiinnmisiiesssssssisessssssssssssssssssanssssssssnsssssssans 8
StOChAStiC MOEIS (SIMI & SIMI2) ...ttt et e e ettt e e e e e e s etbab e e e e eeeeeesabtbareeeeeeesasbsrseeeeeesanans 8
GENELIC ProOZramMMING (GP) ..uveiiiciieeeiiiieeeeiee e et e e ettt e e e et e e e eettaeeestbeeeaassseeeesnsaeeessseeeasssseseasnsseeessseasesnssesennnnns 9
Polynomial Neural NetWOrkS (PNN) ....ccciiii e e ciiee e et e stee e e st e e e esetv e e e s aaeeeesateeeeessaeessasseeeessseeesasssseessnsneens 10
3. RESULTS AND DISCUSSION ......coiiiiiiiceeiciisrrrrsrssessssssss s s ssssssssssssssssessesssmsssssssssssssennnnns 1
4. CONCLUSION ......iiiiiiiiicccecssss e rr s rrsmssss s s s e e s e s s s s s as s s e e r e s s nmnnsssssssennernnmassssssssnennnrnnnnnnnnnn 13
ACKNOWLEDGEMENTS ... ciiiiiiiirriccessss s s e s ssssmsssssssss s s e s e s s nmsssssssssssnnessnmssssssssssenensnnnnnnssns 15
REFERENGCES. ...... ..o rrr s msssss s s s s s s s ss s s s e s e e e nmmass s ss s s e e e e s s nmnassssssssennnnnnnnnsnssnsnnnns 15
Table 1 — Calculated parameters for the annual components and stochastic models during calibration (1992-
RS T I PSPPSR PP 17
Table 2. Model results for the estimation of mean water tempPeratures .......cccccvveeecveeeecieeeeecree e 18
Table 3. Model results for the estimation of maximum water temperatures ........ccccveevveeeeecieeeeeciee e 18
N o o =1 1 T SO 27



LISTE OF TABLES

1.

Calculated parameters for the annual components and stochastic models during calibration
(1992-1999)

Model results for the estimation of mean water temperatures

Model results for the estimation of maximum water temperatures

LISTE OF FIGURES

Map showing the location of the water temperature site and the meteorological station
Relationship between a) mean daily air temperature and mean daily water temperature and
b) maximum daily air temperature and maximum daily water temperature for Little
Southwest Miramichi River.

Relationship between a) mean monthly air temperature and mean monthly water
temperature and b) maximum monthly air temperature and maximum monthly water
temperature for Little Southwest Miramichi River.

Annual component for both the mean water temperature and maximum water temperatures
for Little Southwest Miramichi River.

Observed and modeled mean water temperature values for a) year 2005 b) year 2010
Observed and modeled maximum water temperature values for a) year 2005 b) year 2010
Comparison between observed and estimated mean water temperature for the test set
(2005-2010) using a) GP b) PNN c) SM1 (MultipleR) d) SM2 (Markov)

Comparison between observed and estimated maximum water temperature for the test set
(2005-2010) using a) GP b) PNN c) SM1 (MultipleR) d) SM2 (Markov)



L& T, e O
~

LISTE OF ACRONYMS AND SYMBOLS

GP Genetic Programming

LSWM Little SW Miramichi

PNN Polynomial Neural Network
RMSE Root Mean Square Error

SM Stochastic Model

WMO World Meteorological Organization
A, A, autocorrelation coefficients
b, by, bs regression coefficients

c vector of real constants

d day of year

K autocorrelation coefficient

Ra residual of air temperature
Rw residual of water temperature
T mean air temperature

TA long-term annual component
Tmn minimum air temperature
Tmx maximum air temperature

Tw mean water temperature

i maximum water temperature




B ‘

ABSTRACT / RESUME

Abstract: Stream water temperature is a very important parameter when assessing aquatic
ecosystem dynamics. For instance, cold-water fishes such as salmon can be adversely affected by
maximum summer temperatures or by those exaggerated by land-use activities such as
deforestation. The present study deals with the modelling of stream water temperatures by means
of two Stochastic Models (SM1 & SM2) and two intelligent algorithms such as genetic programming
(GP) and polynomial neural networks (PNN) to relate air and water temperatures in Little SW
Miramichi, a river in New Brunswick. The results indicated that it was possible to predict daily mean
and maximum stream temperatures using air temperatures and that the four models produced
similar results in predicting these temperatures. The root mean square error (RSME) varied between
1.51°C and 1.77°C on an annual basis from 1990 to 2010. Of the four models, the SM1 using multiple
regression and PNN were preferred based on performance and simplicity in development.

Résumé : La température des cours d’eau est un parametre fort important lors de I'évaluation de la
dynamique des écosystemes aquatiques. Par exemple, les poissons d’eau froide, tel que le saumon,
peuvent étre défavorablement affectés par les températures maximales estivales ou par celles
amplifiées par les activités d’utilisation des sols, telle que la déforestation. La présente étude se
concentre sur la modélisation des températures des cours d’eau en utilisant quatre approches
différentes afin d’associer les températures de I'eau et de I'air du cours d’eau Little SW Miramichi,
situé au Nouveau-Brunswick. Ces approches sont: les méthodes stochastiques, la programmation
génétique et les réseaux de neurones polynomiaux. Les résultats ont indiqué qu’il est possible de
prévoir les températures de I'eau quotidiennes pour des cours d’eau a I'aide des températures de
I'air et que les quatre modeles ont produit des résultats similaires dans la prédiction des
températures du cours d’eau. Le carré moyen des erreurs (CME) variait entre 1,51°C et 1,77°C sur
une base annuelle, de 1990 a 2010. Des quatre modeles, le modéle stochastique utilisant multiple
régression et les réseaux polynomiaux furent les plus performants et simples a développer.



1. Introduction

Water temperature has both economic and ecological significance when considering issues such as
water quality and biotic conditions in rivers (Caissie, 2006). The thermal regime of rivers is influenced
by many factors such as atmospheric conditions, topography, riparian vegetation, stream discharge,
and streambed thermal fluxes (Poole and Berman, 2001; Caissie, 2006; Webb et al., 2008).

Knowledge and the ability to predict stream water temperature are essential to address thermal
discharge problems, water quality and in conducting environmental impact studies. A better
understanding of the natural thermal regime of a river system is also very important in the
management of water supply. The first step in the overall understanding of the stream thermal
regime is to be able to study and predict natural variation in stream water temperatures.

Stream water temperatures have been studied for many years (Macan, 1958; Raphael, 1962; Brown,
1969). Water temperature controls the rate of decomposition of organic matter, dissolved oxygen
content and chemical reactions in general. Stream temperatures have also been monitored in order
to evaluate the impact of human activities due to urbanisation (Kinouchi et al., 2007; Nelson and
Palmer, 2007), thermal pollution (Bradley et al., 1998) as well as land-use activities (Nagasaka et al.,
1999). Flow reduction and flow alteration have also been observed to have an impact on the thermal
regime of rivers (Morin et al., 1994; Sinokrot and Gulliver, 2000). It is therefore important to
consider the thermal regime of rivers during water withdrawal projects and when conducting
instream flow studies.

Water temperature models can be classified into two groups: deterministic or statistical. The
statistical approach predicts water temperatures by linking water temperatures to relevant
meteorological parameters, usually air temperature (Sinokrot and Stefan, 1993; Caissie et al., 2001;
Ahmadi-Nedushan et al., 2007). It is often determined by classical regression analysis, autoregressive
processes, or by using time series analysis such as the Box-Jenkins modeling approach (Box and
Jenkins 1976).

The objectives of the present study are to study Water/Air temperatures relationships and to carry
out a modeling of Stream Water Temperatures.



2. Materials and methods

2.1 Study area

The study site is located within the Miramichi River system. This system has an annual precipitation
ranging from 860 to 1365 mm, with a long-term average of 1142 mm (Caissie and El-Jabi, 1995). On a
monthly basis, precipitation was close to 100 mm per month, with values ranging between 72 mm in
February and 109 mm in November. January has the coldest mean monthly air temperature with a
long-term mean of -11.8 °C. July is the warmest month with a mean monthly air temperature of 18.8
°C, although August at 17.7 °C is very close. Between these two extremes, mean monthly air
temperature varies gradually, with seven months of the year experiencing temperatures above
freezing. The mean annual runoff was estimated at 714 mm for the Miramichi region with values
ranging from 631 mm to 763 mm (Caissie and El-Jabi 1995). The open-water period usually extends
from mid-April to late November within the Miramichi River system.

The study site is located on the Little Southwest Miramichi (LSWM) River at approximately 25 km
from the river mouth (Figure 1). Water temperature data have been collected at this site since 1992.
The Little Southwest Miramichi River is approximately 80 m in width with an average water depth of
0.55 m. The drainage basin of Little Southwest Miramichi River at the water temperature
measurement site covers 1190 km®. A water temperature sensor was installed on this river at
approximately 20 m upstream from the confluence of Catamaran Brook (at approximately 2 m from
the True Right bank, near the bottom). The type of sensor used was a model 107B from Campbell
Scientific Canada Corp. which incorporates the Fenwal Electronic thermistor probe. This probe was
connected to a CR10 data logger. The error associated with this sensor is typically less than 0.2 °C for
the range of -30 °C to +40 °C. Water temperature measurements are carried out every 5 seconds
during the last minute of every hour to calculate an hourly mean water temperature. Lateral
variations in river water temperatures were investigated using measurements with a high precision
mercury thermometer taken at approximately 0.5 m intervals (from bank to bank) and at different
depths. No variations were observed, due to the well-mixed nature (high turbulence) of this river.
The data used in the present study were daily mean water temperatures calculated from hourly data
(mean of 24 observations). Although the riparian vegetation is mature along the banks of the Little
Southwest Miramichi River, this river is nevertheless well exposed to meteorological conditions due
to its relatively large width. Therefore, it can be considered as a wide and shallow river for modeling
purposes. The forest along the LSWM has a canopy closure of less than 20%.

A hydrometric station operated by Environment Canada (since 1951) is located on the Little
Southwest Miramichi (station 01BP001) approximately 16 km downstream from the water
temperatures sampling point. The drainage area above this hydrometric station measures 1340 km®.
The mean annual flow at the Little Southwest Miramichi River hydrometric station was 32.5 m>/s or



764 mm of runoff. The river discharge varies from a low of 1.70 m>/s on January 14, 1959 to a record
high value of 861 m>/s on May 28, 1961.

Meteorological data were obtained from the Catamaran Brook meteorological station, which is
located less than 10 km from the water temperature study sites (Figure 1). The station is located at
the center of a 400 m x 400 m clear cut area to meet Environment Canada and the World
Meteorological Organization (WMO) weather station specification (e.g., wind speed, solar radiation).
Meteorological conditions measured at Catamaran Brook are reflective of conditions experienced by
the Little Southwest Miramichi River due to climate homogeneity within the region (Caissie and El-
Jabi 1995). Therefore, this data base will be used for the water temperature modeling of the Little
Southwest Miramichi River. Air temperature was required for the modeling. The air temperature was
monitored using a Vaisala Relative Humidity and Temperature sensor. It has an accuracy typically
within £ 0.2 °C. The sensor was installed at approximately 1.8 m from the ground.

2.2 Water temperature modeling

Stream water temperature and air temperature relationships were modeled by means of a
Regression Model (RM) and Stochastic Model (SM) and two intelligent algorithms: genetic
programming (GP) and polynomial neural networks (PNN).

Stochastic Models (SM1 & SM2)

Stochastic models use the short-term component and water temperatures of previous days in the
predictions of daily water temperatures. The stochastic model consists of separating the water
temperatures into two different components, namely the long-term seasonal component (or the
annual component) and the short-term non-seasonal component. The short-term component
represents the departure from the long-term annual component during each day, as a result of
above or below normal air temperatures. Therefore, the water temperature, Tw(t), of any given river
system can be represented by these two components, the long-term annual component, TA(t), and
the short-term component, Rw(t), such that:

Tw(t) = TA(t) + Rw(t) (1)

where t represents the day of year (e.g. January 1 = 1 and July 1 = 182). The annual component in
water and air can be represented using a sine function (Caissie et al., 1998 and 2004) given by:

. (27w
TA(t)=a+bsm(%(t—t0)) "

with g, b and t, are estimated coefficients.
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The short-term components in water temperature were obtained by the following equations:

For the stochastic model 1 (SM1) using multiple regression (Caissie et al., 1998):

Rw(t) = b Ra(t) + b,Ra(t - 1) + b,Ra(t - 2)

(3)

For the stochastic model 2 (SM2) using Markov process (Caissie et al., 2004):

Rw(t) = ARW(t -1) + A, Rw(t - 2) + K Ra(?) (4)
where Rw(t) and Ra(t) are non-seasonal component of water and air temperatures; b;, b, and b; are
regression coefficients. A; = Ry(1-R;) / (1-R,%) and A, =(R,-R:%) / (1-R?). R; and R, represent the
autocorrelation coefficients for a lag of one and two days respectively. Once A; and A, were obtained
using the autocorrelation coefficient, K was estimated by minimizing the mean sum of squared errors
between observed and predicted water temperatures during the calibration period.

Genetic programming (GP)

A genetic programming consists of a set of functions involving various operators such as +, -, *, /, sin,
cos, exp, <, >, =, IF; and a terminal set with variables and constants. An initial population is randomly
created with a number of programs (equations) formed by nodes (operators plus variables, and
constants) previously defined according to the problem domain. An objective function is also defined
to evaluate the fitness of each program. Selection, crossover and mutation operators are then
applied to the evolved programs and a new population is created. The whole process is repeated
until the given generation number is reached (Koza, 1989).

In the present study, four arithmetic operators (+, -, *, /), ten input variables; one output variable
and a vector of real constants were selected. Thus, the terminal set to predict the stream water
temperature was:

v
,C Twmean
T@®),T(t-1),T(t-2)
or
Tmx(t), Tmx(t = 1), Tmx(t - 2)
Twmax

Tmn(t), Tmn(t = 1), Tmn(t - 2) (5)
where Tw is the stream temperature (mean or max), t is the day of year (100 ... 320, july 1=182), ¢ is
a vector of real constants, T, Tmx and Tmn are the mean, maximum and minimum air temperatures,
respectively.
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Polynomial Neural Networks (PNN)

PNN is a flexible neural architecture whose topology is not predetermined but developed through
learning. The design is based on Group Method of Data Handling (GMDH) which was invented by
Prof. A. G. Ilvankhnenko in the late 1960s (lvankhnenko, 1971) and later enhanced by others. He
developed the GMDH as a means of identifying nonlinear relations between input and output
variables. As described by Oh and Pedrycz (2002) the GMDH generates successive layers with
complex links that are individual terms of a polynomial equation.

The individual terms generated in the layers are partial descriptions of data (PDs) being the quadratic
regression polynomials with two inputs. The first layer is created by computing regressions of the
input variables and choosing the best ones for survival. For example, if the first two variables, x1 and
x2, are taken and combined into a simple set of polynomial terms the terms would be (1, x1, x2,
x1.x2). Thereafter, all possible models made from these terms are checked and the best one that
satisfies an evaluation criterion (typically mean square error) is retained. The second layer is created
by computing regressions of the values in the previous layer along with the input variables and
retaining the best candidates. More layers are built until the network stops getting better based on
termination criteria.

The following PNN model was used to predict mean and maximum stream temperature:

t e
T(@),T(t-1),T(-2)
or
me(t), me(f _1)9me(t - 2) max
Tmn(t), Tmn(t — 1), Tmn(t - 2) TW (6)

where Tw is the stream temperature (mean or max), t is the day of year (100 ... 320, july 1=182), T,
Tmx and Tmn are the mean, maximum and minimum air temperatures, respectively.

Both algorithms, GP and PNN, will extract the most significant information from the data in order to
find an optimal description of the output. Thus some inputs may not be present the solution.

To compare the relative performance among models, the root-mean-square error

(RMSE) was used which is given by:

RMSE = (7)

with P; and O; being the predicted and observed water temperatures and N the number of
observations.

10
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3. Results and discussion

Prior to the modeling, important water temperature characteristics were studied for the Little
Southwest Miramichi River, in particular the thermal regime (i.e., the annual component) as well as
the diel variability. The first characterization analysis was carried out to study the relationship
between mean (and maximum) daily air and water temperatures. Results of this regression model
showed a significant scatter between air and water temperatures at the daily time step (Figure 2).
This is mainly due to the fact that both air and water temperatures have some level of memory (or
autocorrelation) in the time series. In the case of the mean temperatures, 84% of the variability (R* =
0.838) was explained by air temperature, where only 72% (R> = 0.718) was explained for maximum
temperatures. The slope of these equations can inform on the relationship. For instance, for mean
temperature the slope was 0.94, which means that an increase in mean air temperature of 10°C will
result in an increase in mean water temperature of only 9.4°C. This difference is also observed for
maximum temperatures where the slope of the regression was 0.844. Therefore, an increase of 10°C
in maximum air temperature will results in an increase in maximum water temperature of only 8.4°C.
The linear regression model does not provide a very good water temperature model because of the
significant scatter. However, we can already point out that under climate change, it would be
expected that the water will increase with air temperature but at a slightly low rate based on these
observed relationships.

The next characterisation analysis carried out was a study of monthly air to water relationships. At
such time scale some of the variability is reduced and a better fit was obtained both mean and
maximum temperatures (Figure 3). Results showed that over 95% (R® = 0.95) of the variability in
water temperature can be explained by air temperature on a monthly basis (Figure 3a). From this
figure it can be observed that the month of August and July are those that experienced the highest
temperatures. These months also showed the best fit (least scatter around the regression), although
the month of June and September were close as well. The other months (April, May, October and
November) showed a significant hysteresis where water temperatures were generally higher than
the regression line for October and November (the opposite was also observed for April and May).
On a monthly basis the slope of the recession was very close to unit (1.04), which implies that, at
such scale, water temperature will most like experience similar changes than air temperature during
climate change. Similar results were observed for maximum monthly temperatures, although the
explained variability was less (92%; R® = 0.922; Figure 3b). Similar to mean monthly temperatures,
the slope of the regression line was very close unity (1.01) therefore any changes in air temperature
will be equally transferred to water temperatures. For maximum monthly water temperatures, it
was noticed that the hysteresis was more important than for mean temperatures, especially for low
air temperature in spring and autumn. This has some impact on the regression line, particularly at
high temperatures where the regression line underestimates water temperatures for most of the
high temperature months (July and August).

Following the linear regression analyses, a study of the annual component was carried out, as it is
required in both stochastic models (based on multiple regression and Markov process). The annual

11



component for both the mean and maximum water temperature is presented in Figure 4 and the
fitted parameters of the annual component are provided in Table 1. This figure shows that the peak
mean and maximum water temperatures is reached on day 210 (July 29) with temperatures of 20.4°C
(mean) and 23.0 (maximum). The annual component was also calculated for air temperature (Table
1). Thereafter, the short-term components were calculated for both mean and maximum air and
water temperatures to carry out the stochastic modeling SM1 and SM2.

The computed stream water temperatures using the four models, namely the GP, the PNN and the
two stochastic models SM1 and SM2 are shown in Figure 5 (mean) and 6 (maximum) for the years
2005 and 2010 (see also Appendix). In the case of GP, the first 8 years of available data (1992 to
1999) were used for model training. Data from 2000 to 2004 were used for validation, whereas a
sequential data set (2005 and 2010) was used for testing. The equations obtained for mean and
maximum stream temperatures were as follows:

Mean stream temperature

T.(t) = —140.19085(198.24 +3.2635T(t - 1) +1.6318 Tmn(t - 1) + T(1))*
t

+0.45515T(f) + 0.22839 T (¢ - 2) + 0.36733 T(¢ - 1) +1.2353
Maximum stream temperature

0.0681

t4

2
™ (f) = - {84227 +0.5031[~6.387 — 3Tmn(t - 2) + 4Tmx(t - 2) | T(1 - 1)}

+0.2691Tmx(t) + 0.5134 + 0.26917(£) + 0.26917 (¢ — 1) + 0.2340Tmx(t - 2)

In the case of PNN, the 1992-2005 data were used for training and validation (5-fold cross-validation)
and the 2006-2010 data for testing. The equations obtained for mean and maximum stream
temperatures were as follows:

Mean stream temperature
T (t) = 0.64804 + 0.4551B - 0.0200B8> - 0.1361C + 0.0220C

A = -2687 + 0.3372¢ - 0.0008 + 0.2854T(f) + 0.00307(r)> + 0.1345T(¢-2)
+ 0.0060T()T(¢-2) + 0.00097(¢-2)
B = -33.96 + 0.4287¢ - 0.0010¢* - 0.1391Tmn(t) + 0.0010¢ Tmn(i) + 0.4185T(¢-1)
- 0.0008:T(t-1) + 0.0021Tmn()T(¢ -1) + 0.0070T(¢ —1)
C = -34.87 + 0.4442¢ - 0.0010¢> - 0.0075Tmx(t —1) - 0.0001¢ Tmx(t -1) + 0.0037Tmx(t - 1)°

+ 0.1405T(¢ = 1) + 0.0003tT(t-1) + 0.0060Tmx(t - )T(t - 1)

12
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Maximum stream temperature

T (t) = 0.97094 - 0.07354 - 0.3653B+0.11294B - 0.0378B° + 0.3691C

A = -33.33 + 0.4328¢ - 0.0010¢> + 0.20957(t) + 0.01627(¢)* + 0.18807T(t —1)
- 0.01917(t)T(t -1) + 0.01287(t 1)
B = -3891 + 0.4986¢ - 0.0012£> + 0.0501Tmx(¢) + 0.0115Tmx(¢)* - 0.0097 Tmx(z - 1)
+ 0.0002¢ Tmx(t -1) - 0.0118 Tmx(¢) Tmx(t —1) + 0.0119Tmx(t —1)*
C = -33.39 + 0.4267¢t - 0.0010£* + 0.17717(¢ -2) - 0.0002:T(t —2) + 0.00337(¢ - 2)*

+ 0.0792Tmx(¢) + 0.0002¢ Tmx(£) + 0.0029T(¢ — 2)Tmx(t) +0.0059Tmx(t)*

The stochastic models were calibrated using data from 1992 to 1999 and tested with data from 2000
to 2010. The parameters calculated during the calibration period for each model are presented in
Table 1. The annual components for both the mean water temperature and maximum water
temperature were discussed previously and are shown in Figure 4.

The performances of the water temperature models are presented in Tables 2 and 3. These results
showed that in general the RMSEs for mean water temperature were slightly lower than for the
maximum water temperature. All models performed well; however, the stochastic SM1 (MutipleR)
and PNN models showed slightly better results. Figures 7 and 8 show, for the testing data set (2005-
2010), a comparison between measured and calculated daily average and maximum water
temperatures for each model.

For the testing data set, Tables 2 and 3 showed that the stochastic model SM1 (MultipleR) provided
the best results for mean and maximum water temperatures with an RSME of 1.51 °C and 2.00 °C,
respectively. This model also showed the highest R* (0.947 - mean and 0.933 - maximum). Although
PNN algorithm showed slightly higher RMSE and lower R’ it performed relatively well. A visual
inspection of Figures 5 and 6 also confirms that all models showed a good correspondence between
observed and modeled stream temperatures.

4. Conclusion

Climate Change impacts within river systems include changes in runoff, river flow and groundwater
storage. To these quantitative aspects, some water quality parameters are also expected to change
and must be assessed to determine their physical and biogeochemical implications. With respect to
this biogeochemical water quality, most climate change impacts can be attributed to changes in
stream water temperature. When river water temperature increases, dissolved oxygen decrease, and
biological activities is enhanced, with consequences on nutrients, organic matter and biomass. The
impact of climate change on stream water temperature is highly dependent on the future evolution
of air temperature and other meteorological and physical parameters. As air temperature is the
parameter that is expected to change most significantly under climate change; therefore, water
temperature is also expected to be an extremely important parameter.

13
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To better understand stream water temperature under natural meteorological conditions, the
present study used many different modeling approaches, i.e., linear regression, stochastic models,
GP and PNN, to predict in stream water temperature variations. When dealing with the modeling of
daily water temperatures, the stochastic, GP and PNN models showed a significant improvement
over a linear regression model. However, monthly water temperatures can be modeled effectively
using linear regression. The present study showed that all modeling approaches can be used to
model river water temperatures with RMSEs generally less than 2.0°C. This is most likely due to the
fact that these models take into consideration the autocorrelation in the water temperature time
series (whereas the linear regression model does not). It also showed that intelligent algorithms such
as GP and PNN were able to closely follow the behaviour of stream water temperatures by providing
simple equations which can be readily incorporated into any programming environment.

Based on these findings, these water temperature models, using only air temperature as an
exogenous input, can be useful tools in the modeling of water temperatures under different climate
change scenarios. Such analyses could focus on future spatial and temporal distribution of important
thermal habitats in river as well as the identification of reaches, which will eventually become
unsuitable for aquatic habitat.

The objective of this study was to link changes in air temperature and water temperature, as at high
temperature the relationship will not be linear (due to evaporative cooling). Future studies will also
concentrate on using most reliable climate change scenarios available (CGCM 3.1/T63, SRES 20C3M,
A1B, B1, A2) to predict future water temperatures. Such studies are required to improve our current
understanding of the impact of various climate change scenarios on Stream Water Temperature, a
subject which has not been adequately addressed within the stream temperature modeling
literature. Such a study, will illustrate the usefulness of the Stream Water Temperature models,
coupled with Climate Change Scenarios to explain the evolutions of future water temperature
regimes and associated biogeochemical water quality impacts. The knowledge gained from this study
will enable engineers and water resources managers to better understand the thermal regime of
rivers and its impact on water quality related to climate change impact.
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Table 1 — Calculated parameters for the annual components and stochastic
models during calibration (1992-1999)

Annual component

a b to
Mean water Air 4.8 14 114
temperature Water 4.5 15.9 119
Max water Air 10.7 14.8 114
temperature Water 5.6 17.4 119

Stochastic Model 1 (Multiple Regression)

bs b, bs
Mean water Water 0.137 0.215 0.328
temperature Water 0.134 0.171 0.270
Max water
temperature

Stochastic Model 2 (Markov Process)

A1 A, K
Mean water Water 1.12 -0.293 0.149
temperature Water 0.838 0.663 0.149
Max water
temperature

v -



wm
A

Table 2. Model results for the estimation of mean water temperatures

Periods RMSE R®
GP Train (1992-96) | 1.67 0.937
Valid (2000-04) | 1.55 0.953
Test (2005-10) 1.77 0.926
PNN Train (1992-04) | 1.28 0.963
Test (2005-10) 1.58 0.946
sSm1 Calibr. (1992-04) | 1.33 0.962
Test (2005-10) 1.51 0.947
SM2 Calibr. (1992-04) | 1.53 0.946
Test (2005-10) 1.68 0.938

Note: In the case of PNN, the training data set was also used for cross-validation (5-fold)

Table 3. Model results for the estimation of maximum water temperatures

Periods RMSE R®
GP Train (1992-96) | 1.29 0.960
Valid (2000-04) | 1.93 0.937
Test (2005-10) 2.24 0.909
PNN Train (1992-04) | 1.76 0.944
Test (2005-10) 2.02 0.926
sm1 Calibr. (1992-04) | 1.73 0.942
Test (2005-10) 2.00 0.933
SM2 Calibr. (1992-04) | 1.80 0.936
Test (2005-10) 2.00 0.932

Note: In the case of PNN, the training data set was also used for cross-validation (5-fold)
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Figure 1. Map showing the location of the water temperature site and the meteorological station
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APPENDIX

Mean and maximum water temperatures (1992-2010)
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